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1 Expectation

Let Ω be the sample space and ω ∈ Ω be points in the sample space. A random variable
is a function X : Ω → R, so we consider X(ω) for ω ∈ Ω.

1.1 Average Operator

Consider a finite sample space Ω that consists of ni ωi’s for i = 1, . . . , k and let n =
n1 + . . .+ nk. For any random variable X, define

A(X) := 1
n

∑
ω∈Ω

X(ω) =
k∑

i=1

ni

n
X(ωi) =

k∑
i=1

piX(ωi)

where pi = ni

n
so ∑k

i=1 pi = 1, pi ≥ 0 (pi represents the proportion of elements in Ω that
are ωi). The properties of A are

1. If X ≥ 0, then A(X) ≥ 0

2. If X, Y are random variables, then A(c1X + c2Y ) = c1A(X) + c2A(Y ) where c1, c2

are constants

3. A(1) = 1

Proof. To show 1., suppose X(ω) ≥ 0 for all ω ∈ Ω. Then since each pi ≥ 0, it follows
that piX(ωi) ≥ 0, thus A(X) ≥ 0 by transitivity.
To show 2., by definition of A,

A(c1X + c2Y ) =
k∑

i=1
pi[c1X(ωi) + c2Y (ωi)] = c1

k∑
i=1

piX(ωi) + c2

n∑
i=1

piY (ωi) = c1A(X) + c2A(Y )

To show 3., note that since 1(ω) = 1 for all ω ∈ Ω, then

A(1) =
k∑

i=1
pi = 1

by assumption of the pi’s. ■

1.2 Definition of Expectation

An operator E is an expectation operator if it satisfies the following axioms:

1. If A ≥ 0, then E(X) ≥ 0

2. If X, Y are random variables, then E(c1X + c2Y ) = c1E(X) + c2E(Y ) where c1, c2

are constants

3. E(1) = 1
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4. For X1, X2, . . . ≥ 0, if Xn ↑ X, then E(Xn) ↑ X.

• This properties does not imply that Xi → X =⇒ E(Xi) → E(X); we must
have Xi ↑ X to confidently assert any sort of convergence of expectation

Properties:

(a) E(c1X1 + · · · + cnXn) = c1E(X1) + · · · + cnE(Xn)

(b) If X ≤ Y , then E(X) ≤ E(Y )

(c) |E(X)|≤ E(|X|)

(d) (Fatou’s Lemma) If Xn(ω) ≥ 0 and Xn(ω) → X(ω), then lim inf
n

E(Xn) ≥ E(X)

Definition. Let (ai)i be a sequence of real numbers and define the sequence (bi)i where

bi := inf
k≥i

ai

Then
lim inf

i
ai = lim

i→∞
bi

Similarly,

lim sup
i

ai = − lim inf
i

(−ai) = lim
i→∞

(
sup
k≥i

ai

)

Proposition. A sequence (ai)i converges to a iff

lim inf
i

ai = lim sup
i

ai = a

Theorem (Dominated Convergence). If Xn(ω) → X(ω) and |Xn(ω)|≤ Y (ω) for all
n ∈ N, ω ∈ Ω, and E(Y ) < ∞, then E(Xn) → E(X).

• Y is called a dominator of Xn

1.3 Examples of Expectation

Theorem. The sample space Ω is discrete with elements {ω1, . . . , ωk} iff the expectation
operator takes the form

E(X) =
k∑

i=1
piX(ωi)

where pi ≥ 0 for all i and ∑n
i=1 pi = 1.

• To show a sample space Ω is discrete, we can show that there exists a discrete subset
of Ω with probability 1 (we can say this subset is essentially the entire sample space)
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Proof. To show sufficiency, note that

X(ω) =
k∑

i=1
I({ω = ωi})X(ωi)

Take

E(X) = E

(
k∑

i=1
I({ω = ωi})X(ωi)

)

=
k∑

i=1
E(I({ω = ωi})X(ωi)

=
k∑

i=1
P (ωi)X(ωi)

where we take pi = P (ωi). Setting X = 1, this shows ∑k
i=1 pi = 1.

To show necessity, take X = I{ω = ω1}), thus E(X) = P (ω1) and ∑k
i=1 pi = p1, so

P (ω1) = p1. Similarly, for all i, pi = P (ωi). Thus since the {ωi} are discrete,

P

(
k⋃

i=1
{ωi}

)
= 1

=⇒
k⋃

i=1
{ωi} is essentially the entire sample space

=⇒ Ω is essentially a discrete space with realizations ω1, . . . , ωk

■

Definition (Continuous Random Variables). Let Ω = R. A random variable X is con-
tinuous if there exists a continuous f ≥ 0 with∫

R
f(x) dx = 1

such that
E(X) =

∫ ∞

−∞
X(ω)f(ω) dω

Suppose X = I(A) for some subset A ⊆ Ω. Then

P (A) =
∫

A
f(ω) dω

Note that the above equations are equivalent to

E[H(X)] =
∫
R
H(x)f(x) dx

and
P (X ∈ A) =

∫
A
f(x) dx
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1.4 Moments

Definition. If X is a random variable, define its jth moment to be

µj = E(Xj)

1.5 Sample Surveys

Set up N individuals ω1, . . . , ωN and select a sample

(ξ1, . . . , ξn)

Let Zi = X(ξi) for all i and define

Z̄ = 1
n

(Z1 + · · · + Zn)

Denote xk = X(ωk) for k ∈ {1, . . . , N}. Since each Zi has equal probability of taking on
any xk value, then

E(Zi) = 1
N

N∑
i=1

xi =: X̄

By linearity,

E(Z̄) = 1
n
E

(
n∑

i=1
Zi

)
= X̄

By symmetry, it holds that

E(Z2
i ) = 1

N

N∑
i=1

x2
i

Thus
Var(Zi) = E(Z2

i ) − X̄2 =: V (X)

Theorem. If sampling is without replacement, then

E(Z̄) = X̄

and
Var(Z̄) = 1

n

N − n

N − 1V (X)

If sampling is with replacement, then

E(Z̄) = X̄

and
Var(Z̄) = 1

n
V (X)
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1.6 Least Squares Estimation

Given a response variable X and predictor variables Y1, . . . , Ym, we want to predict X
using the information we have (Yi) by minimizing

E[(X − a0 − a1Y1 + · · · + amYm)2]

Represent the Yi as a vector

Y =


Y1
...
Ym


Define the covariance matrix of Y to be a symmetric matrix

Cov(Y ) =


Var(Y1) Cov(Y1, Y2) · · · Cov(Y1, Ym)

Cov(Y2, Y1) Var(Y2) · · · Cov(Y2, Ym)
... ... . . . ...

Cov(Y1, Ym) Cov(Y2, Ym) · · · Var(Ym)


and the cross-covariance matrix of Y and X to be

Cov(Y,X) =


Cov(Y1, X)

...
Cov(Ym, X)


Theorem. The best linear predictor of X is

X̂ = a0 + a1Y1 + · · · + amYm

where aT =
[
a1 · · · am

]
satisfies

Cov(Y )a = Cov(Y,X)

and
a0 = E(X) −

m∑
j=1

ajE(Yj)

2 Probability

2.1 Indicator Functions

For simplicity, denote I(A) = IA(ω) for all ω ∈ Ω.
Properties:

1. I(Ac) = 1 − I(A)
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2. If A ⊆ B, then I(A) ≤ I(B)

3. I(A ∪B) = max{I(A), I(B)}

4. I(A ∩B) = min{I(A), I(B)}

5. If A1 ⊆ A2 ⊆ · · ·, then I (⋃∞
i=1 Ai) = supi≥1 I(Ai) = limi→∞ I(Ai)

Proof. If

I(A) =

1 ω ∈ A

0 ω /∈ A

then

1 − I(A) =

1 ω /∈ A

0 ω ∈ A
= I(Ac)

Suppose A ⊆ B. Consider the following 3 cases:

1. ω ∈ A =⇒ ω ∈ B =⇒ IA(ω) = 1 = IB(ω)

2. ω ∈ B \ A =⇒ IA(ω) = 0 < 1 = IB(ω)

3. ω /∈ B =⇒ ω /∈ A =⇒ IA(ω) = 0 = IB(ω)

which shows I(A) ≤ I(B).
Consider A ∪B and the following 4 cases:

1. ω ∈ A ∪B \ A =⇒ IA∪B = 1 = max{0, 1} = max{IA(ω), IB(ω)}

2. ω ∈ A ∪B \B =⇒ IA∪B = 1 = max{1, 0} = max{IA(ω), IB(ω)}

3. ω ∈ A ∩B =⇒ ω ∈ A ∪B =⇒ IA∪B(ω) = 1 = max{1, 1} = max{IA(ω), IB(ω}

4. ω /∈ A ∪B =⇒ x /∈ A, x /∈ B =⇒ IA∪B = 0 = max{0, 0} = max{IA(ω), IB(ω)}

Consider A ∩B and the following cases:

1. ω ∈ A ∩B =⇒ IA∩B(ω) = 1 = min{1, 1} = min{IA(ω), IB(ω})

2. ω ∈ A \ A ∩ B =⇒ ω ∈ A, ω /∈ B =⇒ ω /∈ A ∩ B =⇒ IA∩B(ω) = 0 =
min{1, 0} = min{IA(ω), IB(ω)}

3. ω ∈ B \ A ∩ B =⇒ ω /∈ A, ω ∈ B =⇒ ω /∈ A ∩ B =⇒ IA∩B(ω) = 0 =
min{0, 1} = min{IA(ω), IB(ω)}

4. ω /∈ A, ω /∈ B =⇒ ω /∈ A∩B =⇒ IA∩B(ω) = 0 = min{0, 0} = min{IA(ω), IB(ω)}

Suppose A1 ⊆ A2 ⊆ · · ·. Consider the following cases:
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1. If ω ∈ ⋃∞
i=1 Ai, then there exists k ∈ N such that ω ∈ Ak, so ω ∈ Aj for all j ≥ k,

thus IAj
(ω) = 1 for all j ≥ k ≥ 1, so supi≥1 I(Ai) = 1. Moreover, this also shows

that
lim
i→∞

I(Ai) = 1

Since ω ∈ ⋃∞
i=1 Ai, then I (⋃∞

i=1 Ai) = 1.

2. If ω /∈ ⋃∞
i=1 Ai, then for all i ∈ N, ω /∈ Ai, thus IAi

(ω) = 0 for all i. This implies
supi≥1 IAi

(ω) = 0 and
lim
i→∞

IAi
(ω) = 0

Since ω /∈ ⋃∞
i=1 Ai, then I (⋃∞

i=1 Ai) = 0, which proves our claim.

■

2.2 Probabilities

Definition. Let A ⊆ Ω. Let IA be the indicator function on A. The probability of A is

P (A) = E(IA)

Properties:

1. 0 ≤ P (A) ≤ I

2. P (A ∪B) = P (A) + P (B) if A ∩B = ∅

3. P (Ω) = 1

4. If A1 ⊆ A2 ⊆ · · ·, then P

( ∞⋃
i=1

Ai

)
= lim

i→∞
P (Ai)

We prove these properties using the properties of indicator functions.

2.3 Inequalities

Proposition. Suppose X is a nonnegative random variable. Then for all a > 0, we have

I({X(ω) > a}) ≤ X(ω)
a

for all ω ∈ Ω.

Proof. Suppose for some ω that X(ω) > a, thus

I({X(ω) > a}) = 1 < X(ω)
a
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Suppose for some ω that X(ω) ≤ a, since X is nonnegative and a is positive, then

X(ω)
a

≥ 0 = I({X(ω) > a})

as required. ■

From this identity, we can deduce Markov’s Inequality:

Corollary (Markov’s Inequality). For any nonnegative random variable X and a > 0,

P (X > a) ≤ E(X)
a

If we take X = |Y − E(Y )| for some random variable Y , then we have Chebyshev’s
Inequality:

Corollary (Chebyshev’s Inequality). If Y is a random variable and a > 0,

P (|Y − E(Y )|> a) ≤ Var(Y )
a2

Proof. By definition of absolute value, |Y − E(Y )|≥ 0, thus by Markov’s Inequality,

P (|Y − E(Y )|> a) = P ((Y − E(Y ))2 > a2) ≤ E[(Y − E(Y ))2]
a2 = Var(Y )

a2

■

Proposition. If X ≥ 0, then E(X) =
∫ ∞

0
P (X > t) dt

Proof. Rewrite
X =

∫ X

0
1 dt =

∫ ∞

0
I(t < X) dt

By the infinite sum nature of the Riemann integral,

E
(∫ ∞

0
I(t < X) dt

)
=
∫ ∞

0
E(I(t < X)) dt

=
∫ ∞

0
P (t < X) dt

as required. ■

Theorem. If X ≥ 0, then E(X) = 0 iff X = 0 almost surely (i.e., P (X = 0) = 1).

Proof. Suppose E(X) = 0. Define events Ak =
{
X > 1

k

}
, which form an increasing

sequence of events. As k → ∞, Ak → {X > 0} = ⋃∞
k=1 Ak. By property of probability,

P (Ak) → P (X > 0). On the other hand, by Markov’s Inequality, since X is nonnegative
and 1

k
> 0,

0 ≤ P (Ak) = P
(
X >

1
k

)
≤ E(X)

1
k

= 0

Page 10



STA347 Notes
Ian Zhang

1008367955

thus P (Ak) = 0 for all k. By uniquness of the limit, P (Ak) → 0 implies P (X > t) = 0,
so P (X = 0) = 1, as required.
Suppose P (X = 0) = 1. This implies P (X > 0) = 0, thus

E(X) =
∫ ∞

0
0 dt = 0

as required. ■

Corollary. If X is a random variable, then Var(X) = 0 iff X = µ for almost surely where
µ is constant.

Proof. Suppose Var(X) = 0. By definition,

E[(X − E(X))2] = 0

which implies (X − E(X))2 = 0 almost surely since (X − E(X))2 ≥ 0. This implies
X = E(X) almost surely, and taking µ = E(X) proves sufficiency.
Suppose X = µ almost surely. Then |X − µ|= 0 almost surely, thus E(|X − µ|) = 0,
which implies E(X) = µ. This implies |X − E(X)|2= 0 almost surely, so Var(X) =
E[|X − E(X)|2] = 0. ■

2.4 Product Moment Matrices

Definition. If X =
[
X1 · · · Xn

]T
is a random vector, then U = E(XXT ) is the

product moment matrix.

• By definition, if Y = X − E(X), then the product moment matrix of Y is the
covariance matrix of X.

Theorem. A product moment matrix U is symmetric and positive semidefinite. It is
singular iff cTX = 0 almost surely for some constant vector c.

Proof. Since XXT is symmetric, then E(XXT ) is also symmetric. For any vector a,

aTUa = aTE(XXT )a = E(aTXXTa) = E[(aTX)2] ≥ 0

since (aTX)2 ≥ 0, thus U is positive semidefinite by definition.
To show the rest of the claim,

U is singular ⇐⇒ det(U) = 0
⇐⇒ 0 is an eigenvalue of U det is the product of eigenvalues
⇐⇒ cTUc = 0
⇐⇒ E(cTXXT c) = 0
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⇐⇒ E[(cTX)2] = 0
⇐⇒ cTX = 0 a.s. E[(cTX)2] = 0 implies (cTX)2 = 0 a.s.

■

2.4.1 Cauchy-Schwarz Inequality

If X1, X2 are random variables, then

[E(X1X2)]2 ≤ (E(X2
1 ))(E(X2

2 ))

with equality holding iff c1X1 +c2X2 = 0 almost surely for some constants c1, c2 satisfying
c2

1 + c2
2 ̸= 0.

Proof. Consider the random vector XT =
[
X1 X2

]
and its product moment matrix

U = E

X1

X2

 [X1 X2

] =
 E(X2

1 ) E(X1X2)
E(X1X2) E(X2

2 )


Since U is positive semidefinite, det(U) ≥ 0, thus E(X2

1 )E(X2
2 )− (E(X1X2))2 ≥ 0, which

shows the inequality.
Note that equality holds iff U is singular iff there exists c1, c2 such that c2

1 + c2
2 ̸= 0 and

c1X1 + c2X2 = 0 almost surely. ■

2.5 Principle of Inclusion-Exclusion

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P (Ai) +
∑

i1<i2

P (Ai1 ∩ Ai2) + · · ·

+ (−1)r+1 ∑
i1<i2<···<ir

P

 r⋂
j=1

Aij

+ · · · + (−1)n+1P

(
n⋂

i=1
Ai

)

2.6 Independence

Suppose we have a spatial region with M cells and N molecules. Let ξi be the position
of the ith molecule. There are MN elements in the sample space of possible positions for
the N molecules. Suppose that all the molecules are distributed uniformly and define

E[X(ω)] = 1
MN

M∑
a1=1

· · ·
M∑

aN =1
X(a1, . . . , an) (1)

where ωT =
[
a1 · · · aN

]
is a possible positioning in the sample space.
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Theorem. (1) implies that the ξ1, . . . , ξN are uniformly distributed over {1, . . . ,M} and

E

[
N∏

k=1
Hk(ξk)

]
=

N∏
k=1

E[Hk(ξk)]

for all Hk, k ∈ {1, . . . , N}.

Proof. Let X = I(ξi = k) for all i ∈ {1, . . . , N} and k ∈ {1, . . . ,M}. Since ξi(ω) = ωi,
then X = I(ωi = k) = k where ωT =

[
ω1 · · · ωN

]
By (1),

E(X) = 1
MN

M∑
a1=1

· · ·
M∑

aN =1
X(a1, . . . , aN)

Since X(ω) = 0 unless ωi = k and there are Mn−1 possible ω ∈ Ω such ωi = k, then

P (wi = k) = MN−1

MN
= 1
M

which shows that the ξi are uniformly distributed.
To show the rest of the claim, notice

E

[
N∏

k=1
Hk(ξk)

]
= 1
MN

M∑
a1=1

· · ·
M∑

aN =1

(
N∏

k=1
Hk(ak)

)

= 1
MN

 M∑
a1=1

H1(a1)
 · · ·

 M∑
aN =1

HN(aN)


= 1
MN

N∏
k=1

M∑
ak=1

Hk(ak)

but since the molecules are uniformly distributed, then

E[Hk(ξk)] = 1
M

M∑
i=1

Hk(ξi)

thus
N∏

k=1
E[Hk(ξk)] =

N∏
k=1

1
M

M∑
i=1

Hk(ξi) = 1
MN

N∏
k=1

M∑
ak=1

Hk(ak)

as required. ■

Definition. Random variables X1, . . . , Xp are independent if

E

[ p∏
i=1

Hi(Xi)
]

=
p∏

i=1
E[Hi(xi)]

for all functions H1, . . . Hp.

Proposition. X1, . . . , Xp are independent iff P (X1 ∈ A1, . . . , Xp ∈ Ap) =
p∏

i=1
P (Xi ∈ Ai)

for all Ai ⊆ Ω and i = 1, . . . , p.

Page 13



STA347 Notes
Ian Zhang

1008367955

Proposition. Define cdf F (x1, . . . , xp) as the joint cdf of X1, . . . , Xp. Then X1, . . . , Xp

are independent iff

F (x1, . . . , xp) =
p∏

i=1
F (xi) (2)

Note: pmf/pdf’s are only defined for certain classes of random variables but cdfs are
defined for all.

Corollary. If X1 and X2 are discrete and take integer values, then X1 ⊥⊥ X2 iff P (X1 =
x1, X2 = x2) = P (X1 = x1)P (X2 = x2) for all x1, x2 ∈ Z.

2.6.1 Independence of Events

Definition. Events A1, . . . are independent if the indicator random variables I(A1), . . .
are independent.

Proposition. A1, A2, . . . are independent iff

P (Ai1 ∩ · · · ∩ Aik
) =

k∏
j=1

P (Aij
)

Note: Pairwise independence does not imply joint independence.

2.7 Generating Functions

Definition. If X is a random variable, define its probability generating function as

Π(z) = E(zX), z > 0

and its moment generating function as

MX(z) = E(ezX), z ∈ R

Theorem. If X and Y are independent, then

ΠX+Y (z) = ΠX(z)ΠY (z)
MX+Y (z) = MX(z)MY (z)

Proof. Follows by definition of independence. ■

Theorem. If X and Y are random variables and

ΠX(z) = ΠY (z) < ∞ ∀z ∈ [1 − δ, 1 + δ] for some δ > 0

or
MX(z) = MY (z) < ∞ ∀z ∈ [−δ, δ] for some δ > 0
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then X and Y are identically distributed.

Theorem. If X ∼ Poisson(λ), Y ∼ Poisson(µ) and X ⊥⊥ Y , then

X + Y ∼ Poisson(λ + µ)

Proof. By computation, the mgf of Poisson(α) is

M(z) =
∞∑

i=0
P (X = i)ezi = exp(−α)

∞∑
i=0

(α exp(z))i

i! = exp(α(exp(z) − 1))

Since X and Y are independent, then

MX+Y (z) = MX(z)MY (z)
= exp(λ(exp(z) − 1)) exp(µ(exp(z) − 1))
= exp((λ + µ)(exp(z) − 1))

which is the mgf of a Poisson(λ + µ) distribution. ■

Theorem. If MX(z) < ∞ for z ∈ [−δ, δ] for some δ > 0, then

E(Xk) = M
(k)
X (0)

2.7.1 Exponential Distribution

Definition. A random variable X is Exponential with parameter λ if its cdf is

F (x) = 1 − exp(−λx), x ≥ 0

2.7.2 Gamma Distribution

The Gamma function is given by

Γ(α) =
∫ ∞

0
xα−1e−x dx

for α > 0. Its properties include

1. Γ(α + 1) = Γ(α)

2. Γ(n) = (n− 1)! for all n ∈ N

3. Γ
(

1
2

)
=

√
π

Definition. A random variable X has Gamma distribution with parameters α and λ if
it has density

fX(t) =


λαtα−1e−λt

Γ(α) t > 0

0 otherwise
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Note that by definition, Gamma(1, λ) = Exponential(λ).
If X ∼ Gamma(α, λ),

MX(z) = E(ezX)

=
∫ ∞

0
eztλ

αtα−1e−λt

Γ(α) dt

= λα

Γ(α)

∫ ∞

0
tα−1e−(λ−z)t dt

= λα

Γ(α)

∫ ∞

0

(
y

λ − z

)α−1
e−y 1

λ − z
dy y = (λ − z)t

Assume λ − z > 0, so z < λ.

= λα

Γ(α)
1

(λ − z)α

∫ ∞

0
yα−1e−y dy y = (λ − z)t

= λα

Γ(α)(λ − z)α
Γ(α)

=
(

1 − z

λ

)−α

(z < λ)

Then
E(X) = M ′

X(0) = α

λ

Var(X) = M ′′
X(0) − (M ′

X(0))2 = α

λ2

Proposition. If X1, . . . , Xk
iid∼ Exp(λ), then X1 + . . .+Xk ∼ Gamma(k, λ).

Proof. By the theorem above,

MX1+...Xk
(z) =

k∏
i=1

MXi
(z) = (MX1(z))k =

(
1 − z

λ

)−k

which is the mgf of a Gamma(k, λ) random variable. ■

3 Conditioning

3.1 Conditional Expectation

Definition. The conditional expectation of a random variable X given an event A is

E(X | A) = E(XI(A))
P (A)

so long as P (A) > 0.

Theorem. E(X | A) satisfies the axioms of expectation:
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1. E(1 | A) = 1

2. E(c1X1 + c2X2 | A) = c1E(X1 | A) + c2E(X2 | A)

3. If X ≥ 0, then E(X | A) ≥ 0

4. If Xn ↑ X, then E(Xn | A) ↑ E(X | A)

Theorem (Law of Total Expectation). If Ai are disjoint and ⋃n
i=1 Ai = Ω, then

E(X) =
n∑

i=1
P (Ai)E(X | Ai)

Proof. By definition of conditional expectation,
n∑

i=1
P (Ai)E(X | Ai) =

n∑
i=1

P (Ai)
E(XI(A))
P (Ai)

= E

(
X

n∑
i=1

I(Ai)
)

= E(X) since
n∑

i=1
I(Ai) = 1

■

Suppose X and Y are random variables and suppose Y is discrete. We can then define
E(X | Y = y) for all values y that Y takes. Generally, if Y takes on values y1, . . . , yn,
then we can calculate E(X | Y = yi) = µi. Define a random variable Z = µi with
probability P (Y = yi). Then Z is the conditional expectation of X given Y .

• Z = E(X | Y ) = H(Y ) where H(yi) = µi

• This means E(X | Y ) is a random variable and reflects the variability of X among
different values of Y

In general, for all A ⊆ R such that P (Y ∈ A) > 0, E(X | Y ∈ A) is well-defined. On the
other hand, E(X | Y ) is a function G(Y ), so it must hold that

E(X | Y ∈ A) = E[G(Y ) | A]

which implies

E[XI(Y ∈ A)] = E[G(Y )I(Y ∈ A)] ⇐⇒ E[(X −G(Y ))I(Y ∈ A)] = 0

by linearity. Since any function H(Y ) can be approximated by indicator functions, then

E((X −G(Y ))H(Y )) = 0

This leads us to define conditional expectation over random variables as the following:

Page 17



STA347 Notes
Ian Zhang

1008367955

Definition. Let X and Y be random variables. The expectation of X conditional on Y ,
denoted E(X | Y ) is any solution G(Y ) satisfying

E[(X −G(Y ))H(Y )] = 0 (3)

for all functions H.

Theorem. The following hold:

(i) The definition is consistent with the definition in the discrete case.

(ii) If E(X) < ∞, then E(X | Y ) minimizes D = E[(X − φ(Y ))2]

(iii) Uniqueness: If E(X2) < ∞, the solutions to (3) are almost surely equal

– i.e.: If G1(Y ) and G2(Y ) are solutions, then G1(Y ) = G2(Y ) almost surely

Proof. (i) Recall that if Y is discrete and takes on values y1, . . . , yk, then GD(yi) = E(X |
Y = yi). We want to show GD(Y ) is a solution to (3). If Y is discrete, then for any
function H, we have

H(Y ) =
n∑

i=1
I(Y = yi)H(yi)

thus it suffices to show for H(Y ) = I(Y = yi) for all i ∈ {1, . . . , k}. For all i, we want

E[XI(Y = yi)] = E[GD(Y )I(Y = yi)]

Indeed, by definition of expectation conditional on the event {Y = yi},

E[GD(Y )I(Y = yi)] = GD(Y )E[I(Y = yi)]
= E[X | Y = yi]P (Y = yi)
= E[XI(Y = yi)]

as required.
(ii) Let G(Y ) = E(X | Y ) and define φ∗(Y ) = G(Y ) − φ(Y ). Then

D = E[(X −G(Y ) +G(Y ) − φ(Y ))2]
= E[(X −G(Y ))2] + 2E[(X −G(Y ))φ∗(Y )] + E[(φ∗(Y ))2]
= E[(X −G(Y ))2] + E[(φ∗(Y ))2] (4)
≥ E[(X −G(Y ))2]

as required.
(iii) Let G1(Y ) and G2(Y ) be solutions. Let G1(Y ) be φ(Y ) in (4), so

E[(X −G1(Y ))2] = E[(X −G2(Y ))2] + E[(G1(Y ) −G2(Y ))2] (5)
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Similarly,

E[(X −G2(Y ))2] = E[(X −G1(Y ))2] + E[(G2(Y ) −G1(Y ))2] (6)

Equations (5) and (6) imply that

E[(G1(Y ) −G2(Y ))2] = 0

which implies G1(Y ) −G2(Y ) = 0 almost surely, as required. ■

Theorem. E(X | Y ) satisfies the axioms of expectation in an almost surely fashion:

1. If X ≥ 0, then E(X | Y ) ≥ 0 almost surely

2. E(1 | Y ) = 1 almost surely

3. E(a1X1 + a2X2 | Y ) = a1E(X1 | Y ) + a2E(X2 | Y ) almost surely for all a1, a2

4. If Xi ↑ X, then E(Xi | Y ) ↑ E(X | Y ) almost surely

Properties of conditionals:

1. E[L(Y )X | Y ] = L(Y )E(X | Y ) almost surely

2. Tower Law: E[E(X | Y1, Y2) | Y2] = E(X | Y1)

• This implies E[E(X | Y )] = E(X)

3. If E(X | Y1, Y2, Y3) is a function ψ(Y1) of only Y1, then

ψ(Y1) = E(X | Y1) = E(X | Y1, Y2)

4. Conditional decomposition of variance:
Define Var(X | Y ) = E(X2 | Y ) − [E(X | Y )]2. Then

Var(X) = E[Var(X | Y )] + Var[E(X | Y )]

3.2 Conditional Probability

Theorem. P (A | B) = P (A∩B)
P (B)

Proof.
P (A | B) = E[I(A) | B] = E[I(A)I(B)]

P (B) = P (A ∩B)
P (B)

since I(A)I(B) = I(A ∩B). ■

Properties:
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1. P (A | B) = P (A)
P (B)P (B | A)

2. Law of Total Probability:

P (A) =
n∑

i=1
P (Bi)P (A | Bi)

where Bi are disjoint events with ⋃n
i=1 Bi = Ω

3. Let Bi’s be defined as above. Then

P (Bi | A) = P (A | Bi)P (Bi)∑n
j=1 P (A | Bj)P (Bj)

Proof. 1.

P (A | B) = P (A ∩B)
P (B)

P (A)
P (A) = P (A)

P (B)
P (A ∩B)
P (A) = P (A)

P (B)P (B | A)

2. Follows from property of conditional expectation on the random variable I(A).
3. Follows immediately from 1. and 2.. ■

3.3 Independence from a Conditional Perspective

Theorem. Two random variables X and Y are independent if, and only if, E[H(X) |
Y ] = E[H(X)] almost surely for any H such that E[H2(X)] < ∞.

Proof. To show sufficiency, by definition,

E[(X − E(X | Y ))F (Y )] = 0

for all functions F so we only have to show

E[(H(X) − E[H(X)])F (Y )] = 0

holds. By independence,

E[(H(X) − E[H(X)])F (Y )] = E[H(X) − E[H(X)]]E[F (Y )] = 0

thus E[H(X)] = E[H(X) | Y ] almost surely.
To show necessity, for all functions G(Y ),

E[H(X) | Y ]G(Y ) = E[H(X)G(Y ) | Y ] a.s.

thus we have
E[H(X)]G(Y ) = E[H(X)G(Y ) | Y ] a.s.
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Taking expectation of both sides,

E[H(X)]E[G(Y )] = E[H(X)G(Y )]

which shows X and Y are independent by definition. ■

4 Continuous Random Variables and Their Trans-
formations

4.1 Distributions with a Density

Definition. If X =
[
X1 X2 · · · Xn

]T
is a random vector, then X is a continuous

random vector if there exists a function f(x1, . . . , xn) such that f ≥ 0 and

E[H(X)] =
∫
Rn
H(x)f(x) dx

• Note that by axiom of expectation this implies that
∫
Rn f(x) dx = 1

• f is called the density function of X

Corollary. The following properties of density functions hold:

1. P (X ∈ A) =
∫

A f(x) dx

2. Define the cdf of X as F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn). Then

f(x1, . . . , xn) = ∂F (x1, . . . , xn)
∂x1 · · · ∂xn

3. For r ≤ n, the density of
[
X1 · · · Xn

]
is given by

f(x1, . . . , xr) =
∫

· · ·
∫
f(x1, . . . , xn) dxr+1dxr+2 · · · dxn−1dxn

Theorem. If X =
[
X1 · · · Xn

]
is continuous with pdf f(x1, . . . , xn), then then Xi are

independent iff
f(x1, . . . , xn) = f1(x1) · · · fn(xn)

where fi(xi) is the density of Xi.

4.1.1 Transformations

Suppose X and Y are random vectors with dimension m and r respectively with r ≤ qm

and Y = a(X). Suppose Y can be complemented by a transformation Z = b(X) of
dimension m− r such that

X → (Y, Z)
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is an injective transformation and invertible with Jacobian

J(Y, Z) =
∣∣∣∣∣det

[
∂X

∂Y ∂Z

]∣∣∣∣∣
Then the joint density of (Y, Z) is

f(x(y, z))J(y, z)

Consequently, the density of Y is∫
Rm−r

f(x(y, z))J(y, z) dz

Proof. Note that
P (X ∈ A) =

∫
A
f(x) dx

Performing a change of variable by letting (Y, Z) = (a(X), b(X)), we have

P

Y
Z

 ∈ c(A)
 =

∫
c(A)

f(x(y, z))J(y, z) dydz

where c(X) = (a(X), b(X)) = (Y, Z). This implies that the density of (Y, Z) is

f(x(y, z))J(y, z)

as required. ■

• Note that if we have
Y
Z

 = AX where A is some invertible matrix, then J(y, z) =∣∣∣ 1
det(A)

∣∣∣
4.2 Conditional Densities

Theorem. Suppose X and Y are continuous random vectors with joint density f(x, y).
The distribution of X conditional on Y has density

f(x | y) = f(x, y)
fY (y) (7)

where fY (y) =
∫
f(x, y) dy is the density of Y .

Proposition. The definition of the conditional density is consistent with the definition
of conditional expectation.

Proof. By (7), we have

E[H(X) | Y ] =
∫
H(x)f(x | y) dx
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By definition, E[H(X) | Y ] should satisfy

E[H(X)G(Y )] = E[E[H(X) | Y ]G(Y )]

for all functions G. Since E[H(X) | Y ] is a function of Y , then

E[E[H(X) | Y ]G(Y )] =
∫
E[H(X) | Y = y]G(Y )fY (y) dy

=
∫ [∫

H(x)f(x | y dx
]
G(y)fY (y) dy

=
¨

H(x)f(x | y)fY (y)G(y) dxdy

=
¨

H(x)f(x, y)G(y) dxdy

On the other hand,

E[H(X)G(Y )] =
¨

H(x)G(y)f(x, y) dxdy

which shows equality, as desired. ■

4.3 Order Statistics

Suppose X1, . . . , Xn are iid random variables with pdf f(x) and cdf F (x). We can order
the Xi

X(1) ≤ X(2) ≤ · · · ≤ X(n)

where X(1) = min{X1, . . . , Xn} and X(n) = max{X1, . . . , Xn}.

4.3.1 Distribution of Order Statistics

For all x ∈ R,

P (X(n) ≤ x) = P (X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x)

=
n∏

i=1
P (Xi ≤ x) by independence = [F (x)]n

so the density function of X(n) is n[F (x)]n−1f(x). On the other hand,

P (X(1) ≤ x) = 1 − P (X1 > x, . . . , Xn > x)
= 1 − [1 − F (x)]n

thus the density function of X(1) is n[1 − F (x)]n−1f(x).
For any X(i), consider

P (x ≤ X(i) ≤ x+ dx

dx
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where dx is very small. By definition of the order statistics, P (x ≤ X(i) ≤ x+ dx) is the
same as the probability that i − 1 Xj’s must be ≤ x, one of them is between x and dx,
and the rest are greater than x+ dx, which shows

P (x ≤ X(i) ≤ x+ dx) =
(

n

i− 1

)
[F (x)]i−1

(
n− i+ 1

1

)
[F (x+ dx) − F (x)][1 − F (x) + dx]n−i

=
(

n

i− 1

)
(n− i+ 1)[F (x)]i−1f(x)dx[1 − F (x+ dx)]n−i

since dx is small. This means

P (x ≤ X(i) ≤ x+ dx)
dx

=
(

n

i− 1

)
(n− i+ 1)[F (x)]i−1f(x)[1 − F (x+ dx)]n−i

Let dx → 0. Then

fX(i)(x) =
(

n

n− 1

)
(n− i+ 1)[F (x)]i−1f(x)[1 − F (x)]n−i

5 Basic Limit Theorems

5.1 Convergence in Probability

Definition. Let X1, . . . , Xn be a sequence of random variables. Xi → X in probability
if

lim
i→∞

P (|Xi −X|> ε) = 0

for all ε = 0.

Proposition. Suppose Xn is a sequence of random variables.

1. If Xn
p−→ X, then cXn

p−→ cX for constant c.

2. If Xn
p−→ X and Yn

p−→ Y , then Xn + Yn
p−→ X + Y

3. If Xn
p−→ X and Yn

p−→ Y , then XnYn
p−→ XY

4. If Xn
p−→ X and Yn

p−→ c where c ̸= 0 is a constant, then Xn

Yn

p−→ X
c

Proof. Of 3. For all ε > 0, we have P (|Xn −X|> ε) → 0 and P (|Yn − Y |> ε) → 0. Note
that

XnYn −XY = (Xn −X)Y )n+X(Yn −Y ) = (Xn −X)(Yn −Y )+Y (Xn −X)+X(Yn −Y )

Thus for all ε > 0,

P (|XnYn−XY |> ε) ≤ P

(
|(Xn − X)(Yn − Y )|> ε

3

)
+P

(
|Y (Xn − X)|> ε

3

)
+P

(
|X(Yn − Y )|> ε

3

)
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Denote the 3 expressions on the RHS as 1, 2, 3 respectively. We claim 1, 2, 3 → 0 as
n → ∞.
For 1, WLOG let ε < 1. Note that if P (|Xn −X|> ε), then P (|Xn −X|> δ) → 0 for all
δ > ε as P (|Xn−X|> δ) ≤ P (|Xn−X|> ε) if δ > ε. By assumption, P (|Xn−X|> 1) → 0
as n → ∞ and P

(
|Yn − Y |> ε

3

)
→ 0). For any δ > 0, there exists some Nδ ∈ N such

that for all n ≥ Nδ,

P (|Xn −X|> 1) ≤ δ

8
P
(

|Yn − Y |> ε

3

)
≤ δ

8

which implies P
(
|Xn −X||Yn − Y |> ε

3

)
≤ δ

4 if n ≥ Nδ.
For 2 and 3, we claim that P (|X|≥ M) → 0 if M → ∞. Since for all ω ∈ Ω, |X(ω)|< M if
M is large enough given that Xn → X where |X|< ∞, then I(|X|≥ M) → 0 as M → ∞.
Then since 0 ≤ I(|X|≥ M) ≤ 1, by DCT, E(I(|X|≥ M)) → E(0) = 0 as M → ∞. So,
there exists some Mδ ∈ N such that P (|X|≥ Mδ) ≤ δ

8 . By assumption, there exists some
N∗

δ such that P
(
|Yn − Y |> ε

3
1

Mδ

)
≤ δ

8 for n > N∗
δ . Thus,

P
(

|X||Yn − Y |> ε

3
1
Mδ

Mδ

)
≤ δ

4

if n > N∗. We apply a similar argument to |Y ||Xn −X|. So, if n is sufficiently large,

P (|XnYn −XY |> ε) ≤ δ

4 + δ

4 + δ

4 < δ

which shows P (|XnYn −XY |> ε) → 0, as required. ■

Proposition. For some r > 0, if E(|Xn −X|r) → 0 as n → ∞, then Xn
p−→ X.

Proof. We need P (|Xn −X|> ε) → 0 for all ε > 0. Note that

P (|Xn −X|> ε) = P (|Xn −X|r> εr) ≤ E(|Xn −X|r)
εr

→ 0

by Markov’s Inequality. ■

Corollary. If E[(Xn −X)2] → 0, then Xn
p−→ X.

5.1.1 Weak Law of Large Numbers

If X1, X2, . . . is a sequence of random variables with E(Xi) = µi, Var(Xi) = σ2 > 0 and
Cov(Xi, Xj) = 0 for all i ̸= j, then

1
n

n∑
i=1

Xi
p−→ µ
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Proof. Let X̄n = 1
n

∑n
i=1 Xi. Then

E[(X̄n − µ)2] = E

( 1
n

n∑
i=1

(Xi − µ)
)2


Let Yi = Xi − µ, so E(Yi) = 0, E(Y 2
i ) = σ2, and Cov(Yi, Yj) = 0 for all i ̸= j. Then

E[(X̄n − µ)2] = 1
n2E

( n∑
i=1

Yi

)2


= 1
n2

 n∑
i=1

E(Y 2
i ) +

∑
i ̸=j

E(YiYj)


= σ2

n
→ 0

as required. ■

Theorem. If X1, . . . , Xn are independent with cdf F and the empirical cdf is

Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x)

then Fn(x) p−→ F (x) for all x.

Proof. Note that for all x, we have

E[I(Xi ≤ x)] = P (Xi ≤ x) = F (x)

Since each Xi is independent, then so is each I(Xi ≤ x), thus Cov[I(Xi ≤ x), I(Xj ≤
x)] = 0 for all i ̸= j. By the WLLN, we have

Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x) p−→ F (x)

as required. ■

5.2 Convergence in Distribution

Definition. A sequence of random variables X1, X2, . . . converges in distribution to X if

E[H(Xn)] → E[H(X)]

for any bounded and continuous H.

• Notice how this definition does not require Xn to be close to X

• d−→ does not imply p−→
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Theorem. Xn
d−→ X iff P (Xn ≤ x) → P (Xn ≤ x) at any point x at which the cdf of X

is continuous.

Theorem. Xn
d−→ X if MXn(t) → MX(t) as n → ∞ for all t in a neighbourhood of 0.

5.2.1 Normal Random Variables

Definition. X is a normal random variable with mean µ and variance σ2 if it has density

f(x) = 1
σ

√
2π

exp
(

−(x− µ)2

2σ2

)

• The MGF of N (0, 1) is exp( t2

2 )

5.2.2 Central Limit Theorem

Let X1, . . . be iid with mean µ and variance σ2 < ∞. Let Yn =
√

n(Xn−µ)
σ

where X̄n =
1
n

∑n
i=1 Xi . Then Yn

d−→ N (0, 1).

Theorem. p−→ implies d−→.
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