STA347 Notes

[an Zhang

July 29, 2024

Contents
1 Expectation 3
1.1 Average Operator . . . . . . . . . . .. .. 3
1.2 Definition of Expectation . . . . . . . .. ... o0 3
1.3 Examples of Expectation . . . . . .. .. ..o 4
1.4 Moments . . . . . . L 6
1.5 Sample Surveys . . . . ... 6
1.6 Least Squares Estimation . . . . . . ... ... ... .. ......... 7
2 Probability 7
2.1 Indicator Functions . . . . . . . . . . ... 7
2.2 Probabilities . . . . . ... 9
2.3 Inequalities . . . . . . . ... 9
2.4 Product Moment Matrices . . . . . . . . . ... ... ... 11
2.4.1 Cauchy-Schwarz Inequality . . . . . . . . ... ... .. ... ... 12
2.5 Principle of Inclusion-Exclusion . . . . . . ... ... ... ... ..... 12
2.6 Independence . . . . . . . . ... 12
2.6.1 Independence of Events . . . . ... ... ... ... .. ..... 14
2.7 Generating Functions . . . . . . .. ..o 14
2.7.1 Exponential Distribution . . . . . . ... ... ... ... ... 15
2.7.2 Gamma Distribution . . . . .. ... ... L 15
3 Conditioning 16
3.1 Conditional Expectation . . . . . . ... ... ... ... ... 16
3.2 Conditional Probability . . . . . .. .. ... ... 19
3.3 Independence from a Conditional Perspective . . . . . .. ... .. ... 20



lan Zhang

STA347 Notes 1008367955
4 Continuous Random Variables and Their Transformations 21
4.1 Distributions with a Density . . . . . . . . . ... ... ... ... .. .. 21
4.1.1 Transformations . . . . . . . . . . ... ... ... ..., 21

4.2 Conditional Densities . . . . . . . . . . . . ... 22
4.3 Order Statistics . . . . . . . . . . 23
4.3.1 Distribution of Order Statistics . . . . . . . .. ... ... .... 23

5 Basic Limit Theorems 24
5.1 Convergence in Probability . . . . . . . ... .. ... L. 24
5.1.1 Weak Law of Large Numbers . . . . . . ... ... ... ..... 25

5.2 Convergence in Distribution . . . . . ... ... ... ... 26
5.2.1 Normal Random Variables . . . . . .. ... ... ... ...... 27

5.2.2 Central Limit Theorem . . . . . . . . . . . ... .. ... ..... 27

Page 2



lan Zhang
STA347 Notes 1008367955

1 Expectation

Let 2 be the sample space and w € €2 be points in the sample space. A random variable

is a function X : Q — R, so we consider X (w) for w € .

1.1 Average Operator

Consider a finite sample space () that consists of n; w;’s for ¢« = 1,...,k and let n =

n1 + ...+ ng. For any random variable X, define

k k

A(X) = i S X(w) =3 X (w) = 3 piX (w)

wel i=1 i=1

3|3

where p; = " so S¥ pi =1, pi > 0 (p; represents the proportion of elements in  that

are w;). The properties of A are
1. If X >0, then A(X) >0

2. If X,Y are random variables, then A(c; X + oY) = ¢ A(X) + 2 A(Y') where ¢, ¢y

are constants
3. A(l) =1

Proof. To show 1., suppose X (w) > 0 for all w € Q. Then since each p; > 0, it follows
that p; X (w;) > 0, thus A(X) > 0 by transitivity.
To show 2., by definition of A,

k k n
A(ClX + CQY) = Zpi[ch(wi) + CQY(wi)] =C sz‘X(wi) +co ZpiY(wi) = C1A(X) + CQA(Y)
=1 i=1 =1

To show 3., note that since 1(w) =1 for all w € Q, then

A(1) :Z:pi: 1

by assumption of the p;’s. [ |

1.2 Definition of Expectation

An operator F is an expectation operator if it satisfies the following axioms:
1. If A>0, then E(X) >0

2. If X,Y are random variables, then E(c; X + oY) = i E(X) + coE(Y) where ¢, ¢

are constants
3. E(l) =1
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4. For Xy, Xy,...>0,if X,, T X, then F(X,) T X.

o This properties does not imply that X; - X — FE(X;) — E(X); we must

have X; T X to confidently assert any sort of convergence of expectation
Properties:
(a) E(a X1+ -+ eXpn) =aB(Xy) + -+ E(X,)
(b) If X <Y, then E(X) < E(Y)
(c) [E(X)|< E(1X])
(d) (Fatou’s Lemma) If X, (w) > 0 and X,,(w) — X (w), then lirglinfE(Xn) > E(X)

Definition. Let (a;); be a sequence of real numbers and define the sequence (b;); where

b; :=inf q;
k>i
Then
liminf a; = lim b;
7 71— 00
Similarly,

limsup a; = —lim inf(—q;) = lim <sup ai>

i 1—00 k>

Proposition. A sequence (a;); converges to a iff

liminfa; = limsupa; = a
i i

Theorem (Dominated Convergence). If X, (w) — X(w) and |X,(w)|< Y(w) for all
neN weQ and E(Y) < 0o, then F(X,) — E(X).

e Y is called a dominator of X,

1.3 Examples of Expectation

Theorem. The sample space () is discrete with elements {wy, ..., wy} iff the expectation

operator takes the form
k
B(X) =) piX(w)
i=1

where p; > 0 for all 7 and >, p; = 1.

» To show a sample space (2 is discrete, we can show that there exists a discrete subset

of Q with probability 1 (we can say this subset is essentially the entire sample space)
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Proof. To show sufficiency, note that

Take

where we take p; = P(w;). Setting X = 1, this shows 2% | p; = 1.
To show necessity, take X = I{w = w;}), thus E(X) = P(w;) and X%, p; = p1, so
P(wy) = p1. Similarly, for all ¢, p; = P(w;). Thus since the {w;} are discrete,

(i)

k

—> [ J{wi} is essentially the entire sample space
i=1

= () is essentially a discrete space with realizations wy, ..., wy

Definition (Continuous Random Variables). Let 2 = R. A random variable X is con-

tinuous if there exists a continuous f > 0 with

/Rf(x)dx: 1

such that

Suppose X = I(A) for some subset A C . Then
P(A) = / () dw
A
Note that the above equations are equivalent to

BIH(X) = [ H(2)f(x)do

and

P(X € A) = /Af(a:) dr
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1.4 Moments

Definition. If X is a random variable, define its jth moment to be

i = E(X7)
1.5 Sample Surveys
Set up N individuals wq,...,wy and select a sample
(155 6n)

Let Z; = X (&) for all i and define
1
Z:E(Zl+..._|_Zn)

Denote z, = X (wg) for k € {1,..., N}. Since each Z; has equal probability of taking on

any xy value, then
1 Y .
(Zi) = ;ZE
By linearity,
_ 1 n _
E(Z) = E( ZZ-) =X
no\iz1
By symmetry, it holds that
B(z2?) =

N
>
i=1

==

Thus
Var(Z;) = E(Z?) — X? = V(X)

Theorem. If sampling is without replacement, then

E(Z)=X
and i LN n
Var(Z) = SN 1 (X)
If sampling is with replacement, then
E(Z)=X

and
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1.6 Least Squares Estimation

Given a response variable X and predictor variables Yi,...,Y,,, we want to predict X

using the information we have (Y;) by minimizing
E(X —ay—arYr+  +anYn)?
Represent the Y; as a vector
Y=|:
Yo,

Define the covariance matrix of Y to be a symmetric matrix

Var(Y1) Cov(Y1,Ys) -+ Cov(Yy,Yy)
Cov(Y) = Cov(}‘/g,Yl) Var.(Yg) Cov(}?, Yon)
Cov(Y1,Y,) Cov(Ys,Y,) --- Var(Y,)

and the cross-covariance matrix of Y and X to be

Cov(Yy, X)
Cov(Y, X) = :
Cov(Yy,, X)

Theorem. The best linear predictor of X is
X=a+aYi+ +anYn

T=la, --- am} satisfies

where a

Cov(Y)a = Cov(Y, X)

and .
ag = E(X) =) a;E(Y))
j=1

2 Probability

2.1 Indicator Functions

For simplicity, denote [(A) = I4(w) for all w € Q.

Properties:

1. I(A%) = 1 — I(A)
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2. If AC B, then I(A) < I(B)
3. I(AUB) =max{I(A),I(B)}
4. (AN B) =min{I(A),I(B)}

Proof. 1f
](A){l weA
0 we¢A
then
{1 wé¢ A
1-1(A) = = I(A°)
0 weA

Suppose A C B. Consider the following 3 cases:
lL.weAd = weB = Iy(w)=1=Ipw)
2. we B\A = I4(w)=0<1=Ip(w)

3. w¢ B = w¢ A = I[)(w)=0=Iw)

which shows I(A) < I(B).
Consider AU B and the following 4 cases:

l.we AUB\ A = Iy =1=max{0,1} = max{[s(w), [p(w)}

2. we AUB\ B = Iaup=1=max{1,0} = max{ls(w), Ip(w)}

3. we ANB = we AUB = Iyp(w) =1=max{1,1} = max{/s(w), [p(w}

4 w¢ AUB = ¢ A ¢ B = I, =0=max{0,0} = max{[4(w), Ip(w)}
Consider AN B and the following cases:

l.we ANB = Iinp(w) =1=min{l, 1} = min{l4(w), Ig(w})

2 weEA\ANB = weAwé¢B = wé¢ ANB = Iiupw) =0
min{1,0} = min{/4(w), Ip(w)}

3. we B\ANB = w¢AweB = w¢ ANB = Ispw) =0
min{0, 1} = min{/4(w), Ip(w)}

4 wgAwé¢B —= w¢ ANB = I4np(w) =0=min{0,0} = min{/s(w), Ip(w)}

Suppose A; C Ay C ---. Consider the following cases:
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1. If w € U2, A;, then there exists k € N such that w € Ay, sow € A, for all j > F,
thus I4,(w) = 1 for all j > k > 1, so sup;>; I(A4;) = 1. Moreover, this also shows
that

lim [(A;) =1

1—00

Since w € U2, A;, then I (U2, 4;) = 1.

2. Ifw ¢ U, Ay, then for all i € N, w ¢ A;, thus [4,(w) = 0 for all . This implies
sup;>; 14,(w) = 0 and
lim 4, (w) = 0

1—00

Since w ¢ U2, A;, then I (U2, A;) = 0, which proves our claim.

2.2 Probabilities
Definition. Let A C ). Let I4 be the indicator function on A. The probability of A is
P(A) = E(14)
Properties:
1.0<PA)<LI
2. PIAUB)=P(A)+P(B)if ANB =10
3. P(2) =1

. 1—00
i=1

We prove these properties using the properties of indicator functions.

2.3 Inequalities

Proposition. Suppose X is a nonnegative random variable. Then for all a > 0, we have

I{X() > o) < X

for all w € Q.

Proof. Suppose for some w that X (w) > a, thus

X(w)

I{X(w) >a})=1< "
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Suppose for some w that X (w) < a, since X is nonnegative and a is positive, then

X(w)

2 0=I({X(w)>a})
as required. [ |
From this identity, we can deduce Markov’s Inequality:

Corollary (Markov’s Inequality). For any nonnegative random variable X and a > 0,

E(X)

a

P(X >a) <

If we take X = |Y — E(Y)| for some random variable Y, then we have Chebyshev’s
Inequality:

Corollary (Chebyshev’s Inequality). If Y is a random variable and a > 0,
Var(Y)

2

P(IY — E(Y)[> a) <

a

Proof. By definition of absolute value, |[Y — E(Y')|> 0, thus by Markov’s Inequality,

E[(Y — B(Y))?] _ Var(Y)

P(Y = E(Y)|>a) = P(Y — E(Y))* > a®) <

a? a?

[ |
Proposition. If X > 0, then E(X) = /OOO P(X >t)dt
Proof. Rewrite

X:/{)X1dt:/0°o1(t < X)dt
By the infinite sum nature of the Riemann integral,
E(/Ooo](t < X)dt) — /OOOE(I(t < X)) dt
- /0 TPt < X)dt

as required. |

Theorem. If X >0, then E(X) = 0 iff X = 0 almost surely (i.e., P(X =0) = 1).

Proof. Suppose E(X) = 0. Define events A; = {X > %}, which form an increasing
sequence of events. As k — oo, A, — {X > 0} = Up2, Ax. By property of probability,
P(Ay) — P(X > 0). On the other hand, by Markov’s Inequality, since X is nonnegative
and % > 0,

ogp(Ak):P<X>]1€>gE<1X):0
k
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thus P(Ay) = 0 for all k. By uniquness of the limit, P(A;) — 0 implies P(X > t) = 0,
so P(X =0) = 1, as required.
Suppose P(X = 0) = 1. This implies P(X > 0) = 0, thus

E(X) = /OOOdt —0
0
as required. [}

Corollary. If X is a random variable, then Var(X) = 0 iff X = p for almost surely where

1 1s constant.

Proof. Suppose Var(X) = 0. By definition,
E[(X - E(X))* =0

which implies (X — E(X))? = 0 almost surely since (X — E(X))? > 0. This implies
X = E(X) almost surely, and taking u = E(X) proves sufficiency.

Suppose X = p almost surely. Then |X — p|= 0 almost surely, thus E(|]X — u|) = 0,
which implies F(X) = p. This implies | X — E(X)|?= 0 almost surely, so Var(X) =
E[|X — E(X)]*] = 0. [ |

2.4 Product Moment Matrices

T
Definition. If X = [Xl Xn} is a random vector, then U = E(XXT) is the

product moment matrix.

o By definition, if ¥ = X — E(X), then the product moment matrix of Y is the

covariance matrix of X.

Theorem. A product moment matrix U is symmetric and positive semidefinite. It is

singular iff ¢’ X = 0 almost surely for some constant vector c.
Proof. Since X X7 is symmetric, then E(XX7T) is also symmetric. For any vector a,
a'Ua=a"E(XX")a=FE(a"XX"a) = B[(a* X)?] >0

since (e X)? > 0, thus U is positive semidefinite by definition.

To show the rest of the claim,

U is singular <= det(U) =0
<= 0 is an eigenvalue of U det is the product of eigenvalues
<« Uc=0
— E("XXTc)=0
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— E[(c"X)?] =0
— X =0 as. E[(c" X)?] = 0 implies (¢' X)* =0 a.s.

2.4.1 Cauchy-Schwarz Inequality
If X, X5 are random variables, then
[E(X1X2)]” < (B(XP)(E(X3))

with equality holding iff ¢; X7 4¢3 X5 = 0 almost surely for some constants ¢y, ¢y satisfying
i+ #£0.

Proof. Consider the random vector X7 = [Xl XQ} and its product moment matrix

U:E( 2] X, Xﬁ) =

Since U is positive semidefinite, det(U) > 0, thus E(X?)E(X3) — (E(X1X53))?* > 0, which

shows the inequality.

E(X?) E(XiX)
E(X1X,)  E(X3)

Note that equality holds iff U is singular iff there exists ¢y, cy such that ¢? + ¢3 # 0 and
c1X1 + X9 = 0 almost surely. [ |

2.5 Principle of Inclusion-Exclusion

P(CJ ) ZP )+ > P(A,NA;,)

i=1 11 <i2

+ (=) > P (j@ Aij) + o (=)™ P (ﬁ Ai>

11 <ig<-+<ip

2.6 Independence

Suppose we have a spatial region with M cells and N molecules. Let & be the position
of the 7th molecule. There are M elements in the sample space of possible positions for

the N molecules. Suppose that all the molecules are distributed uniformly and define

E[X(w)] MNZ ZXal,..., an) (1)
al1= 1 anN—=— 1
where w? = |a; -+ a N} is a possible positioning in the sample space.
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Theorem. (1) implies that the &, ..., &y are uniformly distributed over {1,..., M} and

g [I_I Hk<gk>] ~ I1 BlHL)

for all Hy, ke {1,...,N}.

Proof. Let X = I(§ = k) foralli € {1,...,N} and k € {1,..., M}. Since &(w) = w;,

then X = I(w; = k) = k where w! = {wl wN} By (1),
M
E(X MNZ Y X(ag, ..., an)
a;=1 an=1
Since X (w) = 0 unless w; = k and there are M~ ! possible w € Q such w; = k, then
MN-1 1
(wi =k) = —5 = 35

which shows that the &; are uniformly distributed.

To show the rest of the claim, notice

e[ men] - g 2+ 3 ([T o
- (ﬁ; Hl(a1)> (Nﬁél HN(aN))
e 1135

but since the molecules are uniformly distributed, then

E[Hy(&)] 7ZHI<: (&)

thus

N N | M N M

[T 26 = T 37 3 Hel6) = i 1T > 1

k=1 k=1 " i=1 =1 ap—1
as required. [}
Definition. Random variables Xj, ..., X, are independent if

<4ﬁmaﬂ:ﬁﬂmmﬂ

i=1

for all functions Hy,... H).

Proposition. X1, ..., X, are independent iff P(X; € 4,...,X, € 4,) = [[ P(X; € 4))
forall A; CQandi=1,...,p.
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Proposition. Define cdf F(xy,...,z,) as the joint cdf of X;,...,X,. Then X;,... X,

are independent iff
p

F(J;l,...,xp):HF(xi) (2)

i=1
Note: pmf/pdf’s are only defined for certain classes of random variables but cdfs are
defined for all.

Corollary. If X; and X, are discrete and take integer values, then X; 1l X, iff P(X; =
x1, Xo = x9) = P(X1 = 1) P(X3 = x9) for all z1, 29 € Z.

2.6.1 Independence of Events

Definition. Events A, ... are independent if the indicator random variables I(A4,),...

are independent.

Proposition. Ay, A,, ... are independent iff

P(A,

11

Nn---NA;,) =[] P(4,)

i=1

Note: Pairwise independence does not imply joint independence.

2.7 Generating Functions

Definition. If X is a random variable, define its probability generating function as
[(z) = B(z*),2>0
and its moment generating function as
Mx(z) = E(e**),z € R
Theorem. If X and Y are independent, then

Mxiy(2) = x(2)y (2)
Mx iy (z) = Mx(2)My(z)

Proof. Follows by definition of independence. [ |

Theorem. If X and Y are random variables and
x(z) =1ly(2) <o Vze[l—46,1+ 0] for some § > 0

or
Mx(z) = My(z) < oo Vz € [—6,0] for some § > 0
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then X and Y are identically distributed.

Theorem. If X ~ Poisson(A), Y ~ Poisson(u) and X 1L Y, then
X +Y ~ Poisson(A + p)

Proof. By computation, the mgf of Poisson(«) is

i P(X = exp(— i anp 2)) = exp(a(exp(z) — 1))

=0

Since X and Y are independent, then

Mx v (2) = Mx(2)My(z)
= exp(A(exp(z) — 1)) exp(u(exp(z) — 1))
= exp((A + p)(exp(z) — 1))

which is the mgf of a Poisson(A + p) distribution. [ |

Theorem. If Mx(z) < oo for z € [—4, ] for some 6 > 0, then
B(X*) = M(0)
2.7.1 Exponential Distribution
Definition. A random variable X is Exponential with parameter A if its cdf is
F(z)=1—exp(—Az),2 >0

2.7.2 Gamma Distribution

The Gamma function is given by

for a > 0. Its properties include
1. T'(a+1) =T (a)
2. T(n)=(n—1)!foralln e N
3.7(3)=vr
Definition. A random variable X has Gamma distribution with parameters o and A if

AatozflefAt
e t>0
fx(t) = { I(a)

0 otherwise

it has density
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Note that by definition, Gamma(1,A) = Exponential(A).
If X ~ Gamma(a,A),

Mx(2) = E(e*™)

00 }\ata—l —At
= / et At dt
0 I'«)

— A /OO ta—le—()\—z)t dt
I'(a) Jo

AY ey Nt ]
_ d =A—2)t
F(a)/o (7\—2) P (A-2)

Assume A — 2 > 0, 50 z < A.

A 1 © 1y o
_F(Oé)O\—Z)a/O y eV dy y=A—-2)t

)\a
“Tn—a

— (1—i>a(z<>\)

Then
B(X) = My(0) = 5
«
Var(X) = M%(0) — (Mx(0))* = 32
Proposition. It X1, ..., X; 1 Exp(A), then X, + ... + X, ~ Gamma(k, \).

Proof. By the theorem above,

My, 4. x,(2) = ﬁMXL(Z) = (M, (2))* = (1 _ )k

which is the mgf of a Gamma(k, A) random variable. |

3 Conditioning

3.1 Conditional Expectation

Definition. The conditional expectation of a random variable X given an event A is

E(XI(A))

B(X| 4) = =5

so long as P(A) > 0.

Theorem. E(X | A) satisfies the axioms of expectation:
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1. E(11A4) =1

2. E(aXi+6Xo|A)=aEX |A) +cE(X, | A)
3. If X >0, then E(X | A) >0

4. I X, 1 X, then E(X, | A) 1 B(X | A)

Theorem (Law of Total Expectation). If A; are disjoint and ! ; A; = €2, then
E(X) = ZP(Az‘)E(X | A;)

=1

Proof. By definition of conditional expectation,

ip@‘li)E(X | A) = iP(Ai)W
=L (Xil(fli)>
= E(X) sincezn:[(Ai)zl

Suppose X and Y are random variables and suppose Y is discrete. We can then define
E(X | Y = y) for all values y that Y takes. Generally, if Y takes on values 41, ..., yn,
then we can calculate E(X | Y = y;) = p;. Define a random variable Z = pu; with
probability P(Y = y;). Then Z is the conditional expectation of X given Y.

e Z=FX|Y)=H() where H(y;) = 1

o This means F(X | Y) is a random variable and reflects the variability of X among

different values of Y

In general, for all A C R such that P(Y € A) >0, E(X | Y € A) is well-defined. On the
other hand, F(X | Y) is a function G(Y'), so it must hold that

EX|YeA=FEGY)|A
which implies
EXI(Y € A)|=FE[GY)I(Y €A)] < E[(X-GY))I(Y €A)]=0
by linearity. Since any function H(Y') can be approximated by indicator functions, then
E((X ~ GIY)H(Y)) =0
This leads us to define conditional expectation over random variables as the following:
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Definition. Let X and Y be random variables. The expectation of X conditional on Y,
denoted E(X |Y) is any solution G(Y') satisfying

E[(X -GY)H(Y)] =0 (3)
for all functions H.
Theorem. The following hold:
(i) The definition is consistent with the definition in the discrete case.
(ii) If E(X) < oo, then E(X | Y) minimizes D = E[(X — ¢(Y))?]
(iii) Uniqueness: If E(X?) < oo, the solutions to (3) are almost surely equal
— ie.: If Gi(Y) and G5(Y') are solutions, then G1(Y') = G5(Y') almost surely

Proof. (i) Recall that if Y is discrete and takes on values i, . . ., yx, then GP(y;) = E(X |
Y = y;). We want to show GP(Y) is a solution to (3). If YV is discrete, then for any

function H, we have
H(Y) =3 1Y =) H(y)
i=1
thus it suffices to show for H(Y) = I(Y =vy;) for all i € {1,... k}. For all i, we want
E[XI(Y =y)] = E[G"(Y)I(Y = y,)]
Indeed, by definition of expectation conditional on the event {Y = y;},
E[GPW)I(Y =y)] = GP(Y)E[I(Y = y)]
= EX Y =y]P(Y =y)
= BIXI(Y = yi)]

as required.
(ii) Let G(Y) = E(X | Y) and define ¢*(Y) = G(Y) — p(Y). Then

D =E[(X - GY)+G(Y) = oY)
= E[(X = G(Y))*] + 2E[(X = GV)e (V)] + E[(¢"(Y))*]
= E[(X = G(Y))’] + E[(¢"(Y))’] (4)
> E[(X - G(Y))Y]

as required.
(iii) Let G1(Y) and Go(Y') be solutions. Let G1(Y) be ¢(Y) in (4), so

E[(X - Gi(Y))’] = B(X — G2(Y))’] + E[(G1(Y) — Go(Y))?] (5)
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Similarly,
E[(X = Go(Y))’] = E[(X = G1(Y))*] + E[(G2(Y) = Gi(Y))7] (6)
Equations (5) and (6) imply that
E[(G1(Y) = Go(Y))*] =0
which implies G1(Y) — G2(Y') = 0 almost surely, as required. |
Theorem. F(X |Y) satisfies the axioms of expectation in an almost surely fashion:
1. If X >0, then E(X |Y) > 0 almost surely
2. E(1]Y) =1 almost surely
3. E(ai X1+ aeXo | Y) =1 E(X1 | Y) + a2 E(X, | Y) almost surely for all ay, as
4. If X; 1 X, then E(X; |Y) 1 E(X |Y) almost surely

Properties of conditionals:

1. E[L(Y)X | Y] = L(Y)E(X | Y) almost surely
2. Tower Law: E[E(X | Y1,Y2) | V2] = E(X | V)
o This implies E[E(X | V)] = E(X)
3. If E(X | Y1,Ys,Y3) is a function ¢(Y;) of only Y;, then
Y(¥h) = B(X | Vi) = B(X | Y;, Ya)

4. Conditional decomposition of variance:
Define Var(X | Y) = E(X? |Y) — [E(X | Y)]2. Then

Var(X) = E[Var(X | Y)] + Var[E(X | Y)]

3.2 Conditional Probability

Theorem. P(A | B) = 2405

P(B)
Frool E[I(A)I(B)] P(ANB)
P(A| B) = BlI(4) | B) = S = S0
since I(A)I(B) =I(AN B). [ |
Properties:
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1. P(A|B) = 45 P(B| A)

2. Law of Total Probability:

P(4) =3 P(B)P(A| B)

i=1

where B; are disjoint events with U, B; = Q2

3. Let B,’s be defined as above. Then

P(A| B;)P(B)
i1 P(A| B;)P(Bj)

P(B; | A) =

Proof. 1.

B P(ANB) P(A) B P(A) P(AN B) B P(A)
PAIB) = =5y pa) ~ ) p(a) Py P

2. Follows from property of conditional expectation on the random variable I(A).

3. Follows immediately from 1. and 2.. ]

3.3 Independence from a Conditional Perspective

Theorem. Two random variables X and Y are independent if, and only if, E[H(X) |
Y] = E[H(X)] almost surely for any H such that E[H?(X)] < oo.

Proof. To show sufficiency, by definition,
E[(X — B(X | Y))F(Y)] =0
for all functions F' so we only have to show
E[(H(X) = E[H(X)])F(Y)] = 0

holds. By independence,

thus E[H(X)] = E[H(X) | Y] almost surely.

To show necessity, for all functions G(Y'),
EHX)|Y|GY)=EHX)GY)|Y] a.s.

thus we have
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Taking expectation of both sides,

which shows X and Y are independent by definition. |

4 Continuous Random Variables and Their Trans-

formations

4.1 Distributions with a Density

T
Definition. If X = [Xl Xg - Xn} is a random vector, then X is a continuous

random vector if there exists a function f(zy,...,xz,) such that f > 0 and
EIH(X)) = [ H@)f(@)de
« Note that by axiom of expectation this implies that [g. f(x)dz =1
o fis called the density function of X
Corollary. The following properties of density functions hold:
1. PIXeA) = [, f(z)dx

2. Define the cdf of X as F(xq,...,2,) = P(X; <z1,..., X, <x,). Then

OF (z1,...,x,)
flxy,...,z,) = 851 o,
3. For r < n, the density of [Xl e Xn} is given by

flzy,. .. x,) :/--~/f(a:1,...,a:n)d.tcr+1da:r+2~--da:n_lda:n

Theorem. If X = [Xl e Xn} is continuous with pdf f(zq,...,z,), then then X; are
independent iff

f(xla cee 7*7;71) = fl(xl) te fn(xn>
where f;(z;) is the density of X;.

4.1.1 Transformations

Suppose X and Y are random vectors with dimension m and r respectively with » < gm
and Y = a(X). Suppose Y can be complemented by a transformation Z = b(X) of

dimension m — r such that
X — (Y, 2)
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is an injective transformation and invertible with Jacobian

J(Y,Z) =

o avar

Yoz
Then the joint density of (Y, Z) is
Fla(y, 2)) Iy, 2)
Consequently, the density of YV is
| Il ), 2) dz

Proof. Note that
P(X € A) = /Af(a:) dz

Performing a change of variable by letting (Y, Z) = (a(X),b(X)), we have

Y
P(z Aﬂzlmﬂﬂ%mﬂ%a@m

where ¢(X) = (a(X),b(X)) = (Y, Z). This implies that the density of (Y, Z) is

f(x(y,2))J(y,2)

as required. |

« Note that if we have = AX where A is some invertible matrix, then J(y, z) =

1
det(A) ’

4.2 Conditional Densities

Theorem. Suppose X and Y are continuous random vectors with joint density f(x,y).

The distribution of X conditional on Y has density

f(z,y)
fr(y)

(7)

flx]y) =

where fy(y / f(z,y) dy is the density of Y.

Proposition. The definition of the conditional density is consistent with the definition

of conditional expectation.

Proof. By (7), we have
X)|Y]= /H (x|y)d
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By definition, E[H(X) | Y] should satisfy
E[H(X)G(Y)] = E[E[H(X) | Y]G(Y)]
for all functions G. Since E[H(X) | Y] is a function of Y, then
B[E[H(X) | N = [ EIH(X) | Y = g]GOYV) fr(y) dy
—/Uﬁ flw | yde| Gy v () dy
~ [ H@) @ 19 fr)6) dedy
- [ n@ 6w dody

ﬂmmam=ﬂﬁwmwwwmw

which shows equality, as desired. [ |

On the other hand,

4.3 Order Statistics

Suppose X1, ..., X, are iid random variables with pdf f(z) and cdf F'(z). We can order
the Xz

where X1y = min{Xy,..., X, } and X(,) = max{Xy,..., X, }.

4.3.1 Distribution of Order Statistics

For all z € R,
P(Xpy <z)=P(X; <2, Xy<z,...,X, <)

=[] P(Xi < 2) by independence = [F'(z)]"

i=1

so the density function of X,y is n[F(2)]" ' f(x). On the other hand,

P(Xqyy<z)=1-P(X;>uz,...,X, >x)
=1-[1-F()]"

thus the density function of X(y) is n[l — F(z)]" ! f(z).
For any X(;), consider
Plx < Xy <o +dx
dx
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where dz is very small. By definition of the order statistics, P(z < X(;) <  +dx) is the
same as the probability that i — 1 X;’s must be < z, one of them is between x and dxz,

and the rest are greater than x + dx, which shows

Plr < X <o +dr) = (z 7_1 1) [F(x)]" ! <n _f * 1) [F(z 4+ dz) — F(x)][1 — F(x) + dx]"™"

B (z f 1) (n—i+ )[F(x)]" ' f(x)dz[l — F(z + dx)]"™

since dz is small. This means

P(x S X(i) S ZE+dlL’)
dx

_ (2 " 1) (n—i+ D[F @)~ f(2)[1 - F(z + do)]"™

Let dx — 0. Then

fro o) = (

n
n—1

) (n— i+ VP @)L - F)

5 Basic Limit Theorems

5.1 Convergence in Probability

Definition. Let Xi,..., X,, be a sequence of random variables. X; — X in probability
if
Zlgglo P(X; — X|>¢)=0

for all e = 0.
Proposition. Suppose X, is a sequence of random variables.

1. If X, & X, then ¢X,, & ¢X for constant c.

2. If X, L Xand VY, &Y, then X, +VY, & X +Y

3. I X, 5 X and Y, &Y, then X,.Y,, & XY

P X

4. If X,, & X and Y,, & ¢ where ¢ # 0 is a constant, then % — =

C

Proof. Of 3. For all € > 0, we have P(|X,, — X|>¢) — 0 and P(]Y,, —Y|>¢) — 0. Note
that

XY, XY =(X, - X)Y)n+X(Y,—-Y)= (X, - X)(V,, - V) +Y(X, - X))+ X(YV,-Y)
Thus for all € > 0,

P(|XnY,—XY|>¢e) < P (I(Xn - X)(Y,—Y)|> §>+P <|Y(Xn - X)|> ;>+p <|X(yn —Y)[> ;)
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Denote the 3 expressions on the RHS as 1, 2, 3 respectively. We claim 1,2,3 — 0 as
n — oQ.

For 1, WLOG let ¢ < 1. Note that if P(|.X,, — X|> ¢), then P(|X,, — X|> ) — 0 for all
d>cas P(|X,—X|> ) < P(|X,,—X|> ¢) if § > e. By assumption, P(|X,,—X|> 1) — 0
as n — oo and P (|Yn -Y|> %) — 0). For any 6 > 0, there exists some Ns € N such
that for all n > Ns,

P(X,—X|>1) <

| o >

P (\Yn > ;) <

which implies P (|X, — X|[Y, = Y[>£) < if n > Ny,

For 2 and 3, we claim that P(|X|> M) — 0if M — oo. Since for allw € Q, | X (w)|< M if
M is large enough given that X,, — X where | X|< oo, then I(|X|> M) — 0 as M — oo.
Then since 0 < I(|X|> M) < 1, by DCT, E(I(|X|> M)) — E(0) =0 as M — oo. So,
there exists some M;s € N such that P(|X|> Ms) < &. By assumption, there exists some
Nj such that P (|Yn -Y> %M%;) < ¢ for n > Nj. Thus,

e 1 1)
Pl|XI||Y,=Y]>=-"Ms) < -
<| I >33 5>—4

if n > N*. We apply a similar argument to |Y||X,, — X|. So, if n is sufficiently large,

o o0 90
— < — — —
P(XaYy = XY[>e) < o4 745 <0

which shows P(| XY, — XY|> ¢) — 0, as required. [ |
Proposition. For some r > 0, if E(|X,, — X|") = 0 as n — oo, then X,, & X.

Proof. We need P(|X,, — X|>¢) — 0 for all € > 0. Note that

_E(Xa = X])

P(|X, — X|> ¢) = P(IX, — X|"> €") 0

87’

by Markov’s Inequality. |

Corollary. If E[(X, — X)?] — 0, then X,, & X.

5.1.1 Weak Law of Large Numbers

If X;,Xs,...is a sequence of random variables with F(X;) = p;, Var(X;) = 0? > 0 and
Cov(X;, X;) =0 for all i # j, then
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Proof. Let X, = %Z?Zl X;. Then

E[(X, - ) = E

EHCE m)Q]

n;3

Let YV; = X; — u, so E(Y;) =0, E(Y}?) = 0%, and Cov(Y;,Y;) = 0 for all i # j. Then

()

Bl(X,— ] = 5 F

1 n
- (Z B(Y2)+ ZE(Yin))
i=1 i#j
2
=2 50
n
as required. |

Theorem. If X,..., X, are independent with cdf F' and the empirical cdf is

n

=1

1
F.(r)=—
(0) ="~
then F,(z) 2 F(x) for all .
Proof. Note that for all x, we have

EI(X; <z)=PX; <z)=F(x)

Since each X; is independent, then so is each I(X; < z), thus Cov[/(X; < z),I(X; <
x)] =0 for all i # j. By the WLLN, we have

F(z) ==Y 1(X; <z) 5 F(z)

=1

as required. |
5.2 Convergence in Distribution

Definition. A sequence of random variables X7, X, ... converges in distribution to X if
E[H(Xy)] = E[H(X)]
for any bounded and continuous H.

e Notice how this definition does not require X,, to be close to X

« % does not imply 2
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Theorem. X, % X iff P(X, <z)— P(X, <) at any point z at which the cdf of X

is continuous.

Theorem. X, % X if Mx, (t) = Mx(t) as n — oo for all ¢ in a neighbourhood of 0.

5.2.1 Normal Random Variables

Definition. X is a normal random variable with mean u and variance o if it has density

f@) = ——exp (—“"“‘))

o/ 2 202

« The MGF of A(0,1) is exp(£)

5.2.2 Central Limit Theorem
Let Xi,... be iid with mean g and variance 0? < oo. Let Y, = ViXn=i) where X, =

Ly X, . Then Y, % N(0,1).

n

o aod
Theorem. 2 implies .
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