STA347 Notes

Ian Zhang

July 29, 2024

Contents

1 Expectation

Let Ω be the sample space and $\omega \in \Omega$ be points in the sample space. A random variable is a function $X : \Omega \to \mathbb{R}$, so we consider $X(\omega)$ for $\omega \in \Omega$.

1.1 Average Operator

Consider a finite sample space Ω that consists of $n_i \omega_i$'s for $i = 1, ..., k$ and let $n =$ $n_1 + \ldots + n_k$. For any random variable *X*, define

$$
A(X) := \frac{1}{n} \sum_{\omega \in \Omega} X(\omega) = \sum_{i=1}^{k} \frac{n_i}{n} X(\omega_i) = \sum_{i=1}^{k} p_i X(\omega_i)
$$

where $p_i = \frac{n_i}{n}$ $p_n^{\overline{n}_i}$ so $\sum_{i=1}^k p_i = 1$, $p_i \geq 0$ (p_i represents the *proportion* of elements in Ω that are ω_i). The properties of A are

- 1. If $X > 0$, then $A(X) > 0$
- 2. If *X*, *Y* are random variables, then $A(c_1X + c_2Y) = c_1A(X) + c_2A(Y)$ where c_1, c_2 are constants
- 3. $A(1) = 1$

Proof. To show 1., suppose $X(\omega) \geq 0$ for all $\omega \in \Omega$. Then since each $p_i \geq 0$, it follows that $p_i X(\omega_i) \geq 0$, thus $A(X) \geq 0$ by transitivity. To show 2., by definition of *A*,

k k

$$
A(c_1X + c_2Y) = \sum_{i=1}^{k} p_i[c_1X(\omega_i) + c_2Y(\omega_i)] = c_1 \sum_{i=1}^{k} p_i X(\omega_i) + c_2 \sum_{i=1}^{n} p_i Y(\omega_i) = c_1 A(X) + c_2 A(Y)
$$

To show 3., note that since $1(\omega) = 1$ for all $\omega \in \Omega$, then

$$
A(1) = \sum_{i=1}^{k} p_i = 1
$$

by assumption of the p_i 's. s .

1.2 Definition of Expectation

An operator *E* is an expectation operator if it satisfies the following axioms:

- 1. If $A \geq 0$, then $E(X) \geq 0$
- 2. If *X*, *Y* are random variables, then $E(c_1X + c_2Y) = c_1E(X) + c_2E(Y)$ where c_1, c_2 are constants
- 3. $E(1) = 1$

- 4. For $X_1, X_2, \ldots \geq 0$, if $X_n \uparrow X$, then $E(X_n) \uparrow X$.
	- This properties does *not* imply that $X_i \to X \implies E(X_i) \to E(X)$; we must have $X_i \uparrow X$ to confidently assert any sort of convergence of expectation

Properties:

- (a) $E(c_1X_1 + \cdots + c_nX_n) = c_1E(X_1) + \cdots + c_nE(X_n)$
- (b) If $X \leq Y$, then $E(X) \leq E(Y)$
- (c) |*E*(*X*)|≤ *E*(|*X*|)
- (d) (Fatou's Lemma) If $X_n(\omega) \ge 0$ and $X_n(\omega) \to X(\omega)$, then $\liminf_n E(X_n) \ge E(X)$

Definition. Let $(a_i)_i$ be a sequence of real numbers and define the sequence $(b_i)_i$ where

$$
b_i := \inf_{k \geq i} a_i
$$

Then

$$
\liminf_{i} a_i = \lim_{i \to \infty} b_i
$$

Similarly,

$$
\limsup_{i} a_i = -\liminf_{i} (-a_i) = \lim_{i \to \infty} \left(\sup_{k \ge i} a_i \right)
$$

Proposition. A sequence $(a_i)_i$ converges to *a* iff

$$
\liminf_i a_i = \limsup_i a_i = a
$$

Theorem (Dominated Convergence). If $X_n(\omega) \to X(\omega)$ and $|X_n(\omega)| \leq Y(\omega)$ for all $n \in \mathbb{N}, \omega \in \Omega, \text{ and } E(Y) < \infty, \text{ then } E(X_n) \to E(X).$

• *Y* is called a dominator of X_n

1.3 Examples of Expectation

Theorem. The sample space Ω is discrete with elements $\{\omega_1, \ldots, \omega_k\}$ iff the expectation operator takes the form

$$
E(X) = \sum_{i=1}^{k} p_i X(\omega_i)
$$

where $p_i \geq 0$ for all *i* and $\sum_{i=1}^n p_i = 1$.

• To show a sample space Ω is discrete, we can show that there exists a discrete subset of Ω with probability 1 (we can say this subset is essentially the entire sample space)

■

Proof. To show sufficiency, note that

$$
X(\omega) = \sum_{i=1}^{k} I(\{\omega = \omega_i\}) X(\omega_i)
$$

Take

$$
E(X) = E\left(\sum_{i=1}^{k} I(\{\omega = \omega_i\}) X(\omega_i)\right)
$$

$$
= \sum_{i=1}^{k} E(I(\{\omega = \omega_i\}) X(\omega_i))
$$

$$
= \sum_{i=1}^{k} P(\omega_i) X(\omega_i)
$$

where we take $p_i = P(\omega_i)$. Setting $X = 1$, this shows $\sum_{i=1}^{k} p_i = 1$. To show necessity, take $X = I\{\omega = \omega_1\}$, thus $E(X) = P(\omega_1)$ and $\sum_{i=1}^k p_i = p_1$, so $P(\omega_1) = p_1$. Similarly, for all *i*, $p_i = P(\omega_i)$. Thus since the $\{\omega_i\}$ are discrete,

$$
P\left(\bigcup_{i=1}^{k} \{\omega_{i}\}\right) = 1
$$

\n
$$
\implies \bigcup_{i=1}^{k} \{\omega_{i}\} \text{ is essentially the entire sample space}
$$

\n
$$
\implies \Omega \text{ is essentially a discrete space with realizations } \omega_{1}, \dots, \omega_{k}
$$

Definition (Continuous Random Variables). Let $\Omega = \mathbb{R}$. A random variable *X* is continuous if there exists a continuous $f \geq 0$ with

$$
\int_{\mathbb{R}} f(x) \, dx = 1
$$

such that

$$
E(X) = \int_{-\infty}^{\infty} X(\omega) f(\omega) d\omega
$$

Suppose $X = I(A)$ for some subset $A \subseteq \Omega$. Then

$$
P(A) = \int_A f(\omega) \, d\omega
$$

Note that the above equations are equivalent to

$$
E[H(X)] = \int_{\mathbb{R}} H(x)f(x) dx
$$

and

$$
P(X \in A) = \int_A f(x) \, dx
$$

1.4 Moments

Definition. If *X* is a random variable, define its *j*th moment to be

$$
\mu_j = E(X^j)
$$

1.5 Sample Surveys

Set up *N* individuals $\omega_1, \ldots, \omega_N$ and select a sample

$$
(\xi_1,\ldots,\xi_n)
$$

Let $Z_i = X(\xi_i)$ for all *i* and define

$$
\bar{Z} = \frac{1}{n}(Z_1 + \dots + Z_n)
$$

Denote $x_k = X(\omega_k)$ for $k \in \{1, ..., N\}$. Since each Z_i has equal probability of taking on any x_k value, then

$$
E(Z_i) = \frac{1}{N} \sum_{i=1}^{N} x_i =: \bar{X}
$$

By linearity,

$$
E(\bar{Z}) = \frac{1}{n}E\left(\sum_{i=1}^{n} Z_i\right) = \bar{X}
$$

By symmetry, it holds that

$$
E(Z_i^2) = \frac{1}{N} \sum_{i=1}^{N} x_i^2
$$

Thus

$$
\text{Var}(Z_i) = E(Z_i^2) - \bar{X}^2 =: V(X)
$$

Theorem. If sampling is without replacement, then

$$
E(\bar{Z}) = \bar{X}
$$

and

$$
\text{Var}(\bar{Z}) = \frac{1}{n} \frac{N-n}{N-1} V(X)
$$

If sampling is with replacement, then

$$
E(\bar{Z})=\bar{X}
$$

and

$$
\text{Var}(\bar{Z}) = \frac{1}{n}V(X)
$$

1.6 Least Squares Estimation

Given a response variable *X* and predictor variables Y_1, \ldots, Y_m , we want to predict *X* using the information we have (Y_i) by minimizing

$$
E[(X - a_0 - a_1 Y_1 + \dots + a_m Y_m)^2]
$$

Represent the Y_i as a vector

$$
Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_m \end{bmatrix}
$$

Define the covariance matrix of *Y* to be a symmetric matrix

$$
Cov(Y) = \begin{bmatrix} Var(Y_1) & Cov(Y_1, Y_2) & \cdots & Cov(Y_1, Y_m) \\ Cov(Y_2, Y_1) & Var(Y_2) & \cdots & Cov(Y_2, Y_m) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(Y_1, Y_m) & Cov(Y_2, Y_m) & \cdots & Var(Y_m) \end{bmatrix}
$$

and the cross-covariance matrix of *Y* and *X* to be

$$
Cov(Y, X) = \begin{bmatrix} Cov(Y_1, X) \\ \vdots \\ Cov(Y_m, X) \end{bmatrix}
$$

Theorem. The best linear predictor of *X* is

$$
\hat{X} = a_0 + a_1 Y_1 + \dots + a_m Y_m
$$

where $a^T = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix}$ satisfies

$$
Cov(Y)a = Cov(Y, X)
$$

and

$$
a_0 = E(X) - \sum_{j=1}^{m} a_j E(Y_j)
$$

2 Probability

2.1 Indicator Functions

For simplicity, denote $I(A) = I_A(\omega)$ for all $\omega \in \Omega$. **Properties:**

1.
$$
I(A^c) = 1 - I(A)
$$

- 2. If $A \subseteq B$, then $I(A) \leq I(B)$
- 3. $I(A \cup B) = \max\{I(A), I(B)\}\$
- 4. $I(A \cap B) = \min\{I(A), I(B)\}\$

5. If
$$
A_1 \subseteq A_2 \subseteq \cdots
$$
, then $I(\bigcup_{i=1}^{\infty} A_i) = \sup_{i \geq 1} I(A_i) = \lim_{i \to \infty} I(A_i)$

Proof. If

$$
I(A) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}
$$

then

$$
1 - I(A) = \begin{cases} 1 & \omega \notin A \\ 0 & \omega \in A \end{cases} = I(A^c)
$$

Suppose $A \subseteq B$. Consider the following 3 cases:

- 1. $\omega \in A \implies \omega \in B \implies I_A(\omega) = 1 = I_B(\omega)$ 2. $\omega \in B \setminus A \implies I_A(\omega) = 0 < 1 = I_B(\omega)$
- 3. $\omega \notin B \implies \omega \notin A \implies I_A(\omega) = 0 = I_B(\omega)$

which shows $I(A) \leq I(B)$.

Consider $A \cup B$ and the following 4 cases:

- 1. $\omega \in A \cup B \setminus A \implies I_{A \cup B} = 1 = \max\{0, 1\} = \max\{I_A(\omega), I_B(\omega)\}\$
- 2. $\omega \in A \cup B \setminus B \implies I_{A \cup B} = 1 = \max\{1, 0\} = \max\{I_A(\omega), I_B(\omega)\}\$
- 3. $\omega \in A \cap B \implies \omega \in A \cup B \implies I_{A \cup B}(\omega) = 1 = \max\{1, 1\} = \max\{I_A(\omega), I_B(\omega)\}$
- 4. $\omega \notin A \cup B \implies x \notin A, x \notin B \implies I_{A \cup B} = 0 = \max\{0, 0\} = \max\{I_A(\omega), I_B(\omega)\}\$

Consider $A \cap B$ and the following cases:

- 1. $\omega \in A \cap B \implies I_{A \cap B}(\omega) = 1 = \min\{1, 1\} = \min\{I_A(\omega), I_B(\omega)\}\$
- 2. $\omega \in A \setminus A \cap B \implies \omega \in A, \omega \notin B \implies \omega \notin A \cap B \implies I_{A \cap B}(\omega) = 0$ $\min\{1, 0\} = \min\{I_A(\omega), I_B(\omega)\}\$
- 3. $\omega \in B \setminus A \cap B \implies \omega \notin A, \omega \in B \implies \omega \notin A \cap B \implies I_{A \cap B}(\omega) = 0$ $\min\{0, 1\} = \min\{I_A(\omega), I_B(\omega)\}\$

4.
$$
\omega \notin A, \omega \notin B \implies \omega \notin A \cap B \implies I_{A \cap B}(\omega) = 0 = \min\{0, 0\} = \min\{I_A(\omega), I_B(\omega)\}
$$

Suppose $A_1 \subseteq A_2 \subseteq \cdots$ Consider the following cases:

$$
\lim_{i \to \infty} I(A_i) = 1
$$

Since $\omega \in \bigcup_{i=1}^{\infty} A_i$, then $I(\bigcup_{i=1}^{\infty} A_i) = 1$.

2. If $\omega \notin \bigcup_{i=1}^{\infty} A_i$, then for all $i \in \mathbb{N}$, $\omega \notin A_i$, thus $I_{A_i}(\omega) = 0$ for all *i*. This implies $\sup_{i\geq 1} I_{A_i}(\omega) = 0$ and

$$
\lim_{i\to\infty}I_{A_i}(\omega)=0
$$

Since $\omega \notin \bigcup_{i=1}^{\infty} A_i$, then $I(\bigcup_{i=1}^{\infty} A_i) = 0$, which proves our claim.

2.2 Probabilities

Definition. Let $A \subseteq \Omega$. Let I_A be the indicator function on *A*. The probability of *A* is

$$
P(A) = E(I_A)
$$

Properties:

1. $0 \leq P(A) \leq I$

2.
$$
P(A \cup B) = P(A) + P(B)
$$
 if $A \cap B = \emptyset$

3. $P(\Omega) = 1$

4. If
$$
A_1 \subseteq A_2 \subseteq \cdots
$$
, then $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} P(A_i)$

We prove these properties using the properties of indicator functions.

2.3 Inequalities

Proposition. Suppose *X* is a nonnegative random variable. Then for all $a > 0$, we have

$$
I(\{X(\omega) > a\}) \le \frac{X(\omega)}{a}
$$

for all $\omega \in \Omega$.

Proof. Suppose for some ω that $X(\omega) > a$, thus

$$
I(\{X(\omega) > a\}) = 1 < \frac{X(\omega)}{a}
$$

■

Suppose for some ω that $X(\omega) \leq a$, since X is nonnegative and a is positive, then

$$
\frac{X(\omega)}{a} \ge 0 = I(\lbrace X(\omega) > a \rbrace)
$$

as required.

From this identity, we can deduce Markov's Inequality:

Corollary (Markov's Inequality). For any nonnegative random variable X and $a > 0$,

$$
P(X > a) \le \frac{E(X)}{a}
$$

If we take $X = |Y - E(Y)|$ for some random variable *Y*, then we have Chebyshev's Inequality:

Corollary (Chebyshev's Inequality). If *Y* is a random variable and $a > 0$,

$$
P(|Y - E(Y)| > a) \le \frac{\text{Var}(Y)}{a^2}
$$

Proof. By definition of absolute value, $|Y - E(Y)| \geq 0$, thus by Markov's Inequality,

$$
P(|Y - E(Y)| > a) = P((Y - E(Y))^2 > a^2) \le \frac{E[(Y - E(Y))^2]}{a^2} = \frac{\text{Var}(Y)}{a^2}
$$

Proposition. If $X \geq 0$, then $E(X) = \int_0^\infty P(X > t) dt$

Proof. Rewrite

$$
X = \int_0^X 1 \, dt = \int_0^\infty I(t < X) \, dt
$$

By the infinite sum nature of the Riemann integral,

$$
E\left(\int_0^\infty I(t < X) dt\right) = \int_0^\infty E(I(t < X)) dt
$$

$$
= \int_0^\infty P(t < X) dt
$$

as required.

Theorem. If $X \geq 0$, then $E(X) = 0$ iff $X = 0$ almost surely (i.e., $P(X = 0) = 1$).

Proof. Suppose $E(X) = 0$. Define events $A_k = \left\{X > \frac{1}{k}\right\}$ $\}$, which form an increasing sequence of events. As $k \to \infty$, $A_k \to \{X > 0\} = \bigcup_{k=1}^{\infty} A_k$. By property of probability, $P(A_k) \to P(X > 0)$. On the other hand, by Markov's Inequality, since X is nonnegative and $\frac{1}{k} > 0$,

$$
0 \le P(A_k) = P\left(X > \frac{1}{k}\right) \le \frac{E(X)}{\frac{1}{k}} = 0
$$

■

thus $P(A_k) = 0$ for all *k*. By uniquess of the limit, $P(A_k) \to 0$ implies $P(X > t) = 0$, so $P(X = 0) = 1$, as required.

Suppose $P(X = 0) = 1$. This implies $P(X > 0) = 0$, thus

$$
E(X) = \int_0^\infty 0 \, dt = 0
$$

as required.

Corollary. If *X* is a random variable, then $\text{Var}(X) = 0$ iff $X = \mu$ for almost surely where μ is constant.

Proof. Suppose $\text{Var}(X) = 0$. By definition,

$$
E[(X - E(X))^2] = 0
$$

which implies $(X - E(X))^2 = 0$ almost surely since $(X - E(X))^2 \geq 0$. This implies $X = E(X)$ almost surely, and taking $\mu = E(X)$ proves sufficiency.

Suppose $X = \mu$ almost surely. Then $|X - \mu| = 0$ almost surely, thus $E(|X - \mu|) = 0$, which implies $E(X) = \mu$. This implies $|X - E(X)|^2 = 0$ almost surely, so $Var(X) =$ $E[|X - E(X)|^2]$ $]=0.$

2.4 Product Moment Matrices

Definition. If $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^T$ is a random vector, then $U = E(XX^T)$ is the product moment matrix.

• By definition, if $Y = X - E(X)$, then the product moment matrix of Y is the covariance matrix of *X*.

Theorem. A product moment matrix *U* is symmetric and positive semidefinite. It is singular iff $c^T X = 0$ almost surely for some constant vector *c*.

Proof. Since XX^T is symmetric, then $E(XX^T)$ is also symmetric. For any vector *a*,

$$
a^T U a = a^T E(XX^T) a = E(a^T XX^T a) = E[(a^T X)^2] \ge 0
$$

since $(a^T X)^2 \geq 0$, thus *U* is positive semidefinite by definition. To show the rest of the claim,

U is singular \iff det $(U) = 0$ \iff 0 is an eigenvalue of *U* det is the product of eigenvalues $\iff c^T U c = 0$ $\iff E(c^T XX^T c) = 0$

■

$$
\iff E[(c^T X)^2] = 0
$$

$$
\iff c^T X = 0 \quad a.s.
$$

$$
E[(c^T X)^2] = 0 \text{ implies } (c^T X)^2 = 0 \quad a.s.
$$

2.4.1 Cauchy-Schwarz Inequality

If X_1, X_2 are random variables, then

$$
[E(X_1X_2)]^2 \le (E(X_1^2))(E(X_2^2))
$$

with equality holding iff $c_1X_1+c_2X_2=0$ almost surely for some constants c_1, c_2 satisfying $c_1^2 + c_2^2 \neq 0.$

Proof. Consider the random vector $X^T = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$ and its product moment matrix

$$
U = E\left(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \end{bmatrix}\right) = \begin{bmatrix} E(X_1^2) & E(X_1 X_2) \\ E(X_1 X_2) & E(X_2^2) \end{bmatrix}
$$

Since *U* is positive semidefinite, $\det(U) \geq 0$, thus $E(X_1^2)E(X_2^2) - (E(X_1X_2))^2 \geq 0$, which shows the inequality.

Note that equality holds iff *U* is singular iff there exists c_1, c_2 such that $c_1^2 + c_2^2 \neq 0$ and $c_1X_1 + c_2X_2 = 0$ almost surely.

2.5 Principle of Inclusion-Exclusion

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) + \sum_{i_{1} < i_{2}} P(A_{i_{1}} \cap A_{i_{2}}) + \cdots + (-1)^{r+1} \sum_{i_{1} < i_{2} < \cdots < i_{r}} P\left(\bigcap_{j=1}^{r} A_{i_{j}}\right) + \cdots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_{i}\right)
$$

2.6 Independence

Suppose we have a spatial region with *M* cells and *N* molecules. Let ξ_i be the position of the *i*th molecule. There are M^N elements in the sample space of possible positions for the *N* molecules. Suppose that all the molecules are distributed uniformly and define

$$
E[X(\omega)] = \frac{1}{M^N} \sum_{a_1=1}^{M} \cdots \sum_{a_N=1}^{M} X(a_1, \ldots, a_n)
$$
 (1)

where $\omega^T = \begin{bmatrix} a_1 & \cdots & a_N \end{bmatrix}$ is a possible positioning in the sample space.

Theorem. [\(1\)](#page-11-3) implies that the ξ_1, \ldots, ξ_N are uniformly distributed over $\{1, \ldots, M\}$ and

$$
E\left[\prod_{k=1}^N H_k(\xi_k)\right] = \prod_{k=1}^N E[H_k(\xi_k)]
$$

for all $H_k, k \in \{1, ..., N\}.$

Proof. Let $X = I(\xi_i = k)$ for all $i \in \{1, \ldots, N\}$ and $k \in \{1, \ldots, M\}$. Since $\xi_i(\omega) = \omega_i$, then $X = I(\omega_i = k) = k$ where $\omega^T = [\omega_1 \cdots \omega_N]$ By [\(1\)](#page-11-3),

$$
E(X) = \frac{1}{M^N} \sum_{a_1=1}^{M} \cdots \sum_{a_N=1}^{M} X(a_1, \ldots, a_N)
$$

Since $X(\omega) = 0$ unless $\omega_i = k$ and there are M^{n-1} possible $\omega \in \Omega$ such $\omega_i = k$, then

$$
P(w_i = k) = \frac{M^{N-1}}{M^N} = \frac{1}{M}
$$

which shows that the ξ_i are uniformly distributed.

To show the rest of the claim, notice

$$
E\left[\prod_{k=1}^{N} H_k(\xi_k)\right] = \frac{1}{M^N} \sum_{a_1=1}^{M} \cdots \sum_{a_N=1}^{M} \left(\prod_{k=1}^{N} H_k(a_k)\right)
$$

=
$$
\frac{1}{M^N} \left(\sum_{a_1=1}^{M} H_1(a_1)\right) \cdots \left(\sum_{a_N=1}^{M} H_N(a_N)\right)
$$

=
$$
\frac{1}{M^N} \prod_{k=1}^{N} \sum_{a_k=1}^{M} H_k(a_k)
$$

but since the molecules are uniformly distributed, then

$$
E[H_k(\xi_k)] = \frac{1}{M} \sum_{i=1}^{M} H_k(\xi_i)
$$

thus

$$
\prod_{k=1}^{N} E[H_k(\xi_k)] = \prod_{k=1}^{N} \frac{1}{M} \sum_{i=1}^{M} H_k(\xi_i) = \frac{1}{M^N} \prod_{k=1}^{N} \sum_{a_k=1}^{M} H_k(a_k)
$$
 as required.

Definition. Random variables X_1, \ldots, X_p are independent if

$$
E\left[\prod_{i=1}^p H_i(X_i)\right] = \prod_{i=1}^p E[H_i(x_i)]
$$

for all functions $H_1, \ldots H_p$.

Proposition. X_1, \ldots, X_p are independent iff $P(X_1 \in A_1, \ldots, X_p \in A_p) = \prod$ *p i*=1 $P(X_i \in A_i)$ for all $A_i \subseteq \Omega$ and $i = 1, \ldots, p$.

Proposition. Define cdf $F(x_1, \ldots, x_p)$ as the joint cdf of X_1, \ldots, X_p . Then X_1, \ldots, X_p are independent iff

$$
F(x_1, ..., x_p) = \prod_{i=1}^{p} F(x_i)
$$
 (2)

Note: pmf/pdf's are only defined for certain classes of random variables but cdfs are defined for all.

Corollary. If X_1 and X_2 are discrete and take integer values, then $X_1 \perp \hspace{-.07cm}\perp X_2$ iff $P(X_1 =$ $x_1, X_2 = x_2$) = $P(X_1 = x_1)P(X_2 = x_2)$ for all $x_1, x_2 \in \mathbb{Z}$.

2.6.1 Independence of Events

Definition. Events A_1, \ldots are independent if the indicator random variables $I(A_1), \ldots$ are independent.

Proposition. A_1, A_2, \ldots are independent iff

$$
P(A_{i_1} \cap \dots \cap A_{i_k}) = \prod_{j=1}^k P(A_{i_j})
$$

Note: Pairwise independence does not imply joint independence.

2.7 Generating Functions

Definition. If X is a random variable, define its probability generating function as

$$
\Pi(z) = E(z^X), z > 0
$$

and its moment generating function as

$$
M_X(z) = E(e^{zX}), z \in \mathbb{R}
$$

Theorem. If *X* and *Y* are independent, then

$$
\Pi_{X+Y}(z) = \Pi_X(z)\Pi_Y(z)
$$

$$
M_{X+Y}(z) = M_X(z)M_Y(z)
$$

Proof. Follows by definition of independence.

Theorem. If *X* and *Y* are random variables and

$$
\Pi_X(z) = \Pi_Y(z) < \infty \quad \forall z \in [1 - \delta, 1 + \delta] \text{ for some } \delta > 0
$$

or

$$
M_X(z) = M_Y(z) < \infty \quad \forall z \in [-\delta, \delta] \text{ for some } \delta > 0
$$

then *X* and *Y* are identically distributed.

Theorem. If $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$ and $X \perp Y$, then

$$
X + Y \sim \text{Poisson}(\lambda + \mu)
$$

Proof. By computation, the mgf of Poisson (α) is

$$
M(z) = \sum_{i=0}^{\infty} P(X = i) e^{zi} = \exp(-\alpha) \sum_{i=0}^{\infty} \frac{(\alpha \exp(z))^i}{i!} = \exp(\alpha(\exp(z) - 1))
$$

Since *X* and *Y* are independent, then

$$
M_{X+Y}(z) = M_X(z)M_Y(z)
$$

= $\exp(\lambda(\exp(z) - 1)) \exp(\mu(\exp(z) - 1))$
= $\exp((\lambda + \mu)(\exp(z) - 1))$

which is the mgf of a Poisson($\lambda + \mu$) distribution.

Theorem. If $M_X(z) < \infty$ for $z \in [-\delta, \delta]$ for some $\delta > 0$, then

$$
E(X^k) = M_X^{(k)}(0)
$$

2.7.1 Exponential Distribution

Definition. A random variable X is Exponential with parameter λ if its cdf is

$$
F(x) = 1 - \exp(-\lambda x), x \ge 0
$$

2.7.2 Gamma Distribution

The **Gamma function** is given by

$$
\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx
$$

for $\alpha > 0$. Its properties include

- 1. $\Gamma(\alpha + 1) = \Gamma(\alpha)$
- 2. $\Gamma(n) = (n-1)!$ for all $n \in \mathbb{N}$

$$
3. \ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
$$

Definition. A random variable *X* has Gamma distribution with parameters α and λ if it has density

$$
f_X(t) = \begin{cases} \frac{\lambda^{\alpha} t^{\alpha - 1} e^{-\lambda t}}{\Gamma(\alpha)} & t > 0\\ 0 & \text{otherwise} \end{cases}
$$

Note that by definition, $Gamma(1,\lambda) =$ Exponential(λ). If $X \sim \text{Gamma}(\alpha, \lambda),$

$$
M_X(z) = E(e^{zX})
$$

= $\int_0^\infty e^{zt} \frac{\lambda^\alpha t^{\alpha-1} e^{-\lambda t}}{\Gamma(\alpha)} dt$
= $\frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty t^{\alpha-1} e^{-(\lambda-z)t} dt$
= $\frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty \left(\frac{y}{\lambda-z}\right)^{\alpha-1} e^{-y} \frac{1}{\lambda-z} dy$ $y = (\lambda - z)t$

Assume $\lambda - z > 0$, so $z < \lambda$.

$$
= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\lambda - z)^{\alpha}} \int_0^{\infty} y^{\alpha - 1} e^{-y} dy
$$

\n
$$
= \frac{\lambda^{\alpha}}{\Gamma(\alpha)(\lambda - z)^{\alpha}} \Gamma(\alpha)
$$

\n
$$
= \left(1 - \frac{z}{\lambda}\right)^{-\alpha} (z < \lambda)
$$

Then

$$
E(X) = M'_X(0) = \frac{\alpha}{\lambda}
$$

$$
Var(X) = M''_X(0) - (M'_X(0))^2 = \frac{\alpha}{\lambda^2}
$$

Proposition. If $X_1, \ldots, X_k \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda)$, then $X_1 + \ldots + X_k \sim \text{Gamma}(k, \lambda)$.

Proof. By the theorem above,

$$
M_{X_1 + \dots X_k}(z) = \prod_{i=1}^k M_{X_i}(z) = (M_{X_1}(z))^k = \left(1 - \frac{z}{\lambda}\right)^{-k}
$$

which is the mgf of a Gamma (k, λ) random variable.

3 Conditioning

3.1 Conditional Expectation

Definition. The conditional expectation of a random variable *X* given an event *A* is

$$
E(X \mid A) = \frac{E(XI(A))}{P(A)}
$$

so long as $P(A) > 0$.

Theorem. $E(X | A)$ satisfies the axioms of expectation:

■

- 1. $E(1 | A) = 1$
- 2. $E(c_1X_1 + c_2X_2 \mid A) = c_1E(X_1 \mid A) + c_2E(X_2 \mid A)$
- 3. If $X \geq 0$, then $E(X | A) \geq 0$
- 4. If $X_n \uparrow X$, then $E(X_n | A) \uparrow E(X | A)$

Theorem (Law of Total Expectation). If A_i are disjoint and $\bigcup_{i=1}^n A_i = \Omega$, then

$$
E(X) = \sum_{i=1}^{n} P(A_i)E(X \mid A_i)
$$

Proof. By definition of conditional expectation,

$$
\sum_{i=1}^{n} P(A_i)E(X | A_i) = \sum_{i=1}^{n} P(A_i) \frac{E(XI(A))}{P(A_i)}
$$

= $E\left(X \sum_{i=1}^{n} I(A_i)\right)$
= $E(X)$ since $\sum_{i=1}^{n} I(A_i) = 1$

Suppose *X* and *Y* are random variables and suppose *Y* is discrete. We can then define $E(X \mid Y = y)$ for all values *y* that *Y* takes. Generally, if *Y* takes on values y_1, \ldots, y_n , then we can calculate $E(X | Y = y_i) = \mu_i$. Define a random variable $Z = \mu_i$ with probability $P(Y = y_i)$. Then *Z* is the conditional expectation of *X* given *Y*.

- $Z = E(X | Y) = H(Y)$ where $H(y_i) = \mu_i$
- This means *E*(*X* | *Y*) is a random variable and reflects the variability of *X* among different values of *Y*

In general, for all *A* ⊆ ℝ such that $P(Y \in A) > 0$, $E(X | Y \in A)$ is well-defined. On the other hand, $E(X | Y)$ is a function $G(Y)$, so it must hold that

$$
E(X \mid Y \in A) = E[G(Y) \mid A]
$$

which implies

$$
E[XI(Y \in A)] = E[G(Y)I(Y \in A)] \iff E[(X - G(Y))I(Y \in A)] = 0
$$

by linearity. Since any function $H(Y)$ can be approximated by indicator functions, then

$$
E((X - G(Y))H(Y)) = 0
$$

This leads us to define conditional expectation over random variables as the following:

Definition. Let *X* and *Y* be random variables. The expectation of *X* conditional on *Y* , denoted $E(X | Y)$ is any solution $G(Y)$ satisfying

$$
E[(X - G(Y))H(Y)] = 0
$$
\n
$$
(3)
$$

for all functions *H*.

Theorem. The following hold:

- (i) The definition is consistent with the definition in the discrete case.
- (ii) If $E(X) < \infty$, then $E(X | Y)$ minimizes $D = E[(X \varphi(Y))^2]$
- (iii) Uniqueness: If $E(X^2) < \infty$, the solutions to [\(3\)](#page-17-0) are almost surely equal

 $-$ i.e.: If $G_1(Y)$ and $G_2(Y)$ are solutions, then $G_1(Y) = G_2(Y)$ almost surely

Proof. (i) Recall that if *Y* is discrete and takes on values y_1, \ldots, y_k , then $G^D(y_i) = E(X |$ $Y = y_i$. We want to show $G^D(Y)$ is a solution to [\(3\)](#page-17-0). If *Y* is discrete, then for any function H , we have

$$
H(Y) = \sum_{i=1}^{n} I(Y = y_i)H(y_i)
$$

thus it suffices to show for $H(Y) = I(Y = y_i)$ for all $i \in \{1, ..., k\}$. For all *i*, we want

$$
E[XI(Y = y_i)] = E[G^D(Y)I(Y = y_i)]
$$

Indeed, by definition of expectation conditional on the event ${Y = y_i}$,

$$
E[GD(Y)I(Y = yi)] = GD(Y)E[I(Y = yi)]
$$

=
$$
E[X | Y = yi]P(Y = yi)
$$

=
$$
E[XI(Y = yi)]
$$

as required.

(ii) Let $G(Y) = E(X | Y)$ and define $\varphi^*(Y) = G(Y) - \varphi(Y)$. Then

$$
D = E[(X - G(Y) + G(Y) - \varphi(Y))^2]
$$

= $E[(X - G(Y))^2] + 2E[(X - G(Y))\varphi^*(Y)] + E[(\varphi^*(Y))^2]$
= $E[(X - G(Y))^2] + E[(\varphi^*(Y))^2]$
 $\ge E[(X - G(Y))^2]$ (4)

as required.

(iii) Let $G_1(Y)$ and $G_2(Y)$ be solutions. Let $G_1(Y)$ be $\varphi(Y)$ in [\(4\)](#page-17-1), so

$$
E[(X - G_1(Y))^2] = E[(X - G_2(Y))^2] + E[(G_1(Y) - G_2(Y))^2]
$$
\n(5)

Similarly,

$$
E[(X - G_2(Y))^2] = E[(X - G_1(Y))^2] + E[(G_2(Y) - G_1(Y))^2]
$$
\n(6)

Equations [\(5\)](#page-17-2) and [\(6\)](#page-18-1) imply that

$$
E[(G_1(Y) - G_2(Y))^2] = 0
$$

which implies $G_1(Y) - G_2(Y) = 0$ almost surely, as required.

Theorem. $E(X | Y)$ satisfies the axioms of expectation in an almost surely fashion:

- 1. If $X \geq 0$, then $E(X | Y) \geq 0$ almost surely
- 2. $E(1 | Y) = 1$ almost surely
- 3. $E(a_1X_1 + a_2X_2 | Y) = a_1E(X_1 | Y) + a_2E(X_2 | Y)$ almost surely for all a_1, a_2
- 4. If $X_i \uparrow X$, then $E(X_i | Y) \uparrow E(X | Y)$ almost surely

Properties of conditionals:

- 1. $E[L(Y)X | Y] = L(Y)E(X | Y)$ almost surely
- 2. <u>Tower Law:</u> $E[E(X | Y_1, Y_2) | Y_2] = E(X | Y_1)$
	- This implies $E[E(X | Y)] = E(X)$
- 3. If $E(X | Y_1, Y_2, Y_3)$ is a function $\psi(Y_1)$ of only Y_1 , then

$$
\psi(Y_1) = E(X \mid Y_1) = E(X \mid Y_1, Y_2)
$$

4. Conditional decomposition of variance: Define Var(*X* | *Y*) = $E(X^2 | Y) - [E(X | Y)]^2$. Then

 $Var(X) = E[Var(X | Y)] + Var[E(X | Y)]$

3.2 Conditional Probability

Theorem. $P(A | B) = \frac{P(A \cap B)}{P(B)}$

Proof.

$$
P(A | B) = E[I(A) | B] = \frac{E[I(A)I(B)]}{P(B)} = \frac{P(A \cap B)}{P(B)}
$$

since $I(A)I(B) = I(A \cap B)$.

Properties:

- 1. $P(A | B) = \frac{P(A)}{P(B)} P(B | A)$
- 2. Law of Total Probability:

$$
P(A) = \sum_{i=1}^{n} P(B_i)P(A \mid B_i)
$$

where B_i are disjoint events with $\bigcup_{i=1}^n B_i = \Omega$

3. Let B_i 's be defined as above. Then

$$
P(B_i | A) = \frac{P(A | B_i)P(B_i)}{\sum_{j=1}^{n} P(A | B_j)P(B_j)}
$$

Proof. 1.

$$
P(A | B) = \frac{P(A \cap B)}{P(B)} \frac{P(A)}{P(A)} = \frac{P(A)}{P(B)} \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(B)} P(B | A)
$$

2. Follows from property of conditional expectation on the random variable *I*(*A*).

3. Follows immediately from 1. and 2..

3.3 Independence from a Conditional Perspective

Theorem. Two random variables *X* and *Y* are independent if, and only if, $E[H(X)]$ Y = $E[H(X)]$ almost surely for any *H* such that $E[H^2(X)] < \infty$.

Proof. To show sufficiency, by definition,

$$
E[(X - E(X \mid Y))F(Y)] = 0
$$

for all functions *F* so we only have to show

$$
E[(H(X) - E[H(X)])F(Y)] = 0
$$

holds. By independence,

$$
E[(H(X) - E[H(X)])F(Y)] = E[H(X) - E[H(X)]]E[F(Y)] = 0
$$

thus $E[H(X)] = E[H(X) | Y]$ almost surely. To show necessity, for all functions $G(Y)$,

$$
E[H(X) | Y]G(Y) = E[H(X)G(Y) | Y] \quad a.s.
$$

thus we have

$$
E[H(X)]G(Y) = E[H(X)G(Y) | Y] \quad a.s.
$$

Taking expectation of both sides,

$$
E[H(X)]E[G(Y)] = E[H(X)G(Y)]
$$

which shows X and Y are independent by definition.

4 Continuous Random Variables and Their Transformations

4.1 Distributions with a Density

Definition. If $X = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}^T$ is a random vector, then *X* is a continuous random vector if there exists a function $f(x_1, \ldots, x_n)$ such that $f \geq 0$ and

$$
E[H(X)] = \int_{\mathbb{R}^n} H(x)f(x) \, dx
$$

- Note that by axiom of expectation this implies that $\int_{\mathbb{R}^n} f(x) dx = 1$
- *f* is called the density function of *X*

Corollary. The following properties of density functions hold:

- 1. $P(X \in A) = \int_A f(x) dx$
- 2. Define the cdf of *X* as $F(x_1, \ldots, x_n) = P(X_1 \le x_1, \ldots, X_n \le x_n)$. Then

$$
f(x_1,\ldots,x_n)=\frac{\partial F(x_1,\ldots,x_n)}{\partial x_1\cdots\partial x_n}
$$

3. For $r \leq n$, the density of $\begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}$ is given by

$$
f(x_1,\ldots,x_r)=\int\cdots\int f(x_1,\ldots,x_n)\,dx_{r+1}dx_{r+2}\cdots dx_{n-1}dx_n
$$

Theorem. If $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}$ is continuous with pdf $f(x_1, \ldots, x_n)$, then then X_i are independent iff

$$
f(x_1,\ldots,x_n)=f_1(x_1)\cdots f_n(x_n)
$$

where $f_i(x_i)$ is the density of X_i .

4.1.1 Transformations

Suppose *X* and *Y* are random vectors with dimension *m* and *r* respectively with $r \leq qm$ and $Y = a(X)$. Suppose Y can be complemented by a transformation $Z = b(X)$ of dimension $m - r$ such that

$$
X \to (Y, Z)
$$

is an injective transformation and invertible with Jacobian

$$
J(Y, Z) = \left| \det \left[\frac{\partial X}{\partial Y \partial Z} \right] \right|
$$

Then the joint density of (*Y, Z*) is

$$
f(x(y,z))J(y,z)
$$

Consequently, the density of *Y* is

$$
\int_{\mathbb{R}^{m-r}} f(x(y,z)) J(y,z) \, dz
$$

Proof. Note that

$$
P(X \in A) = \int_A f(x) \, dx
$$

Performing a change of variable by letting $(Y, Z) = (a(X), b(X))$, we have

$$
P\left(\begin{bmatrix} Y \\ Z \end{bmatrix} \in c(A)\right) = \int_{c(A)} f(x(y, z)) J(y, z) dy dz
$$

where $c(X) = (a(X), b(X)) = (Y, Z)$. This implies that the density of (Y, Z) is

$$
f(x(y,z))J(y,z)
$$

as required.

• Note that if we have \lceil $\overline{}$ *Y Z* 1 $= AX$ where *A* is some invertible matrix, then $J(y, z) =$ $\begin{array}{|c|c|} \hline \multicolumn{1}{|}{\textbf{1}} & \multicolumn{1}{|}{\textbf{1}} \\ \hline \multicolumn{1}{|}{\textbf{1}} & \multicolumn{1}{|}{\textbf{1}}$ 1 det(*A*) $\begin{array}{|c|c|} \hline \multicolumn{1}{|}{\textbf{1}} & \multicolumn{1}{|}{\textbf{1}} \\ \hline \multicolumn{1}{|}{\textbf{1}} & \multicolumn{1}{|}{\textbf{1}}$

4.2 Conditional Densities

Theorem. Suppose *X* and *Y* are continuous random vectors with joint density $f(x, y)$. The distribution of *X* conditional on *Y* has density

$$
f(x \mid y) = \frac{f(x, y)}{f_Y(y)}\tag{7}
$$

where $f_Y(y) = \int f(x, y) dy$ is the density of *Y*.

Proposition. The definition of the conditional density is consistent with the definition of conditional expectation.

Proof. By [\(7\)](#page-21-1), we have

$$
E[H(X) | Y] = \int H(x)f(x | y) dx
$$

Page 22

By definition, $E[H(X) | Y]$ should satisfy

$$
E[H(X)G(Y)] = E[E[H(X) | Y]G(Y)]
$$

for all functions *G*. Since $E[H(X) | Y]$ is a function of *Y*, then

$$
E[E[H(X) | Y]G(Y)] = \int E[H(X) | Y = y]G(Y)f_Y(y) dy
$$

=
$$
\int \left[\int H(x)f(x | y) dx \right] G(y)f_Y(y) dy
$$

=
$$
\int \int H(x)f(x | y)f_Y(y)G(y) dx dy
$$

=
$$
\int \int H(x)f(x,y)G(y) dx dy
$$

On the other hand,

$$
E[H(X)G(Y)] = \iint H(x)G(y)f(x, y) dx dy
$$

which shows equality, as desired. ■

4.3 Order Statistics

Suppose X_1, \ldots, X_n are iid random variables with pdf $f(x)$ and cdf $F(x)$. We can order the *Xⁱ*

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

where $X_{(1)} = \min\{X_1, \ldots, X_n\}$ and $X_{(n)} = \max\{X_1, \ldots, X_n\}.$

4.3.1 Distribution of Order Statistics

For all $x \in \mathbb{R}$,

$$
P(X_{(n)} \le x) = P(X_1 \le x, X_2 \le x, \dots, X_n \le x)
$$

=
$$
\prod_{i=1}^{n} P(X_i \le x)
$$
 by independence = $[F(x)]^n$

so the density function of $X_{(n)}$ is $n[F(x)]^{n-1}f(x)$. On the other hand,

$$
P(X_{(1)} \le x) = 1 - P(X_1 > x, \dots, X_n > x)
$$

= 1 - [1 - F(x)]ⁿ

thus the density function of $X_{(1)}$ is $n[1 - F(x)]^{n-1}f(x)$. For any $X_{(i)}$, consider

$$
\frac{P(x \le X_{(i)} \le x + dx)}{dx}
$$

where *dx* is very small. By definition of the order statistics, $P(x \le X_{(i)} \le x + dx)$ is the same as the probability that $i - 1$ X_j 's must be $\leq x$, one of them is between x and dx, and the rest are greater than $x + dx$, which shows

$$
P(x \le X_{(i)} \le x + dx) = {n \choose i-1} [F(x)]^{i-1} {n-i+1 \choose 1} [F(x+dx) - F(x)][1 - F(x) + dx]^{n-i}
$$

=
$$
{n \choose i-1} (n-i+1) [F(x)]^{i-1} f(x) dx [1 - F(x+dx)]^{n-i}
$$

since *dx* is small. This means

$$
\frac{P(x \le X_{(i)} \le x + dx)}{dx} = {n \choose i-1} (n-i+1) [F(x)]^{i-1} f(x) [1 - F(x + dx)]^{n-i}
$$

Let $dx \to 0$. Then

$$
f_{X_{(i)}}(x) = {n \choose n-1} (n-i+1) [F(x)]^{i-1} f(x) [1 - F(x)]^{n-i}
$$

5 Basic Limit Theorems

5.1 Convergence in Probability

Definition. Let X_1, \ldots, X_n be a sequence of random variables. $X_i \to X$ in probability if

$$
\lim_{i \to \infty} P(|X_i - X| > \varepsilon) = 0
$$

for all $\varepsilon = 0$.

Proposition. Suppose X_n is a sequence of random variables.

- 1. If $X_n \stackrel{p}{\to} X$, then $cX_n \stackrel{p}{\to} cX$ for constant *c*.
- 2. If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $X_n + Y_n \xrightarrow{p} X + Y$
- 3. If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $X_n Y_n \xrightarrow{p} XY$
- 4. If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} c$ where $c \neq 0$ is a constant, then $\frac{X_n}{Y_n}$ $\xrightarrow{p} \frac{X}{c}$

Proof. Of 3. For all $\varepsilon > 0$, we have $P(|X_n - X| > \varepsilon) \to 0$ and $P(|Y_n - Y| > \varepsilon) \to 0$. Note that

$$
X_n Y_n - XY = (X_n - X)Y)n + X(Y_n - Y) = (X_n - X)(Y_n - Y) + Y(X_n - X) + X(Y_n - Y)
$$

Thus for all $\varepsilon > 0$,

$$
P(|X_nY_n - XY| > \varepsilon) \le P\left(|(X_n - X)(Y_n - Y)| > \frac{\varepsilon}{3}\right) + P\left(|Y(X_n - X)| > \frac{\varepsilon}{3}\right) + P\left(|X(Y_n - Y)| > \frac{\varepsilon}{3}\right)
$$

Denote the 3 expressions on the RHS as 1, 2, 3 respectively. We claim $1, 2, 3 \rightarrow 0$ as $n \to \infty$.

For 1, WLOG let $\varepsilon < 1$. Note that if $P(|X_n - X| > \varepsilon)$, then $P(|X_n - X| > \delta) \to 0$ for all $\delta > \varepsilon$ as $P(|X_n - X| > \delta) \leq P(|X_n - X| > \varepsilon)$ if $\delta > \varepsilon$. By assumption, $P(|X_n - X| > 1) \to 0$ as $n \to \infty$ and $P(|Y_n - Y| > \frac{\varepsilon}{3})$ 3 \rightarrow 0). For any $\delta > 0$, there exists some $N_{\delta} \in \mathbb{N}$ such that for all $n \geq N_{\delta}$,

$$
P(|X_n - X| > 1) \le \frac{\delta}{8}
$$

$$
P(|Y_n - Y| > \frac{\varepsilon}{3}) \le \frac{\delta}{8}
$$

which implies $P(|X_n - X||Y_n - Y| > \frac{\varepsilon}{3})$ 3 ≤ *δ* $\frac{\delta}{4}$ if $n \geq N_{\delta}$.

For 2 and 3, we claim that $P(|X| \ge M) \to 0$ if $M \to \infty$. Since for all $\omega \in \Omega$, $|X(\omega)| < M$ if *M* is large enough given that $X_n \to X$ where $|X| < \infty$, then $I(|X| \ge M) \to 0$ as $M \to \infty$. Then since $0 \leq I(|X| \geq M) \leq 1$, by DCT, $E(I(|X| \geq M)) \to E(0) = 0$ as $M \to \infty$. So, there exists some $M_{\delta} \in \mathbb{N}$ such that $P(|X| \ge M_{\delta}) \le \frac{\delta}{8}$ $\frac{\delta}{8}$. By assumption, there exists some *N*^{*}_δ such that $P(|Y_n - Y| > \frac{\varepsilon}{3})$ 3 1 *M^δ* ≤ *δ* $\frac{\delta}{8}$ for $n > N_{\delta}^*$. Thus,

$$
P\left(|X||Y_n - Y| > \frac{\varepsilon}{3} \frac{1}{M_\delta} M_\delta\right) \le \frac{\delta}{4}
$$

if $n > N^*$. We apply a similar argument to $|Y||X_n - X|$. So, if *n* is sufficiently large,

$$
P(|X_nY_n - XY| > \varepsilon) \le \frac{\delta}{4} + \frac{\delta}{4} + \frac{\delta}{4} < \delta
$$

which shows $P(|X_nY_n - XY| > \varepsilon) \to 0$, as required.

Proposition. For some $r > 0$, if $E(|X_n - X|^r) \to 0$ as $n \to \infty$, then $X_n \xrightarrow{p} X$.

Proof. We need $P(|X_n - X| > \varepsilon) \to 0$ for all $\varepsilon > 0$. Note that

$$
P(|X_n - X| > \varepsilon) = P(|X_n - X|^r > \varepsilon^r) \le \frac{E(|X_n - X|^r)}{\varepsilon^r} \to 0
$$

by Markov's Inequality.

Corollary. If $E[(X_n - X)^2] \to 0$, then $X_n \xrightarrow{p} X$.

5.1.1 Weak Law of Large Numbers

If X_1, X_2, \ldots is a sequence of random variables with $E(X_i) = \mu_i$, $Var(X_i) = \sigma^2 > 0$ and $Cov(X_i, X_j) = 0$ for all $i \neq j$, then

$$
\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{p} \mu
$$

Proof. Let $\bar{X}_n = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} X_i$. Then

$$
E[(\bar{X}_n - \mu)^2] = E\left[\left(\frac{1}{n}\sum_{i=1}^n (X_i - \mu)\right)^2\right]
$$

Let $Y_i = X_i - \mu$, so $E(Y_i) = 0$, $E(Y_i^2) = \sigma^2$, and $Cov(Y_i, Y_j) = 0$ for all $i \neq j$. Then

$$
E[(\bar{X}_n - \mu)^2] = \frac{1}{n^2} E\left[\left(\sum_{i=1}^n Y_i\right)^2\right]
$$

=
$$
\frac{1}{n^2} \left(\sum_{i=1}^n E(Y_i^2) + \sum_{i \neq j} E(Y_i Y_j)\right)
$$

=
$$
\frac{\sigma^2}{n} \to 0
$$

as required. \blacksquare

Theorem. If X_1, \ldots, X_n are independent with cdf *F* and the empirical cdf is

$$
F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)
$$

then $F_n(x) \xrightarrow{p} F(x)$ for all *x*.

Proof. Note that for all *x*, we have

$$
E[I(X_i \le x)] = P(X_i \le x) = F(x)
$$

Since each X_i is independent, then so is each $I(X_i \leq x)$, thus $Cov[I(X_i \leq x), I(X_j \leq x)]$ $[x] = 0$ for all $i \neq j$. By the WLLN, we have

$$
F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x) \xrightarrow{p} F(x)
$$

as required.

5.2 Convergence in Distribution

Definition. A sequence of random variables X_1, X_2, \ldots converges in distribution to X if

$$
E[H(X_n)] \to E[H(X)]
$$

for any bounded and continuous *H*.

- Notice how this definition does not require X_n to be close to X
- $\stackrel{d}{\to}$ does not imply $\stackrel{p}{\to}$

Theorem. $X_n \stackrel{d}{\to} X$ iff $P(X_n \leq x) \to P(X_n \leq x)$ at any point *x* at which the cdf of *X* is continuous.

Theorem. $X_n \stackrel{d}{\to} X$ if $M_{X_n}(t) \to M_X(t)$ as $n \to \infty$ for all *t* in a neighbourhood of 0.

5.2.1 Normal Random Variables

Definition. *X* is a normal random variable with mean μ and variance σ^2 if it has density

$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

• The MGF of $\mathcal{N}(0,1)$ is $\exp(\frac{t^2}{2})$ $\frac{t^2}{2})$

5.2.2 Central Limit Theorem

Let X_1, \ldots be iid with mean μ and variance $\sigma^2 < \infty$. Let $Y_n = \frac{\sqrt{n}(X_n - \mu)}{\sigma}$ where $\bar{X}_n =$ 1 $\frac{1}{n} \sum_{i=1}^{n} X_i$. Then $Y_n \stackrel{d}{\rightarrow} \mathcal{N}(0, 1)$.

Theorem. $\overset{p}{\rightarrow}$ implies $\overset{d}{\rightarrow}$.